SJR Technical Working Group March 25, 2004

SJR DO Depletion Modeling Progress Update

Andy Thuman, P.E. (HydroQual) Laurie De Rosa (HydroQual) Russ Brown, Ph.D. (Jones & Stokes)

Environmental Engineers & Scientists

> 201• 529 • 5151 www.hydroqual.com

Modeling Approach

- Data compilation & review (Data Atlas)
 - Started compiling data, atlas format Russ Brown
- DSM2-delta modeling (develops BC)
 - Started developing BC interface
- DWSC modeling (ECOMSED/RCA)
 - Draft model grid developed
- Upstream SJR modeling (DSM2-sjr)
- Adaptive/Corrective Management

HydroQual Project Status

- Reviewing reports/data from the DWSC and in upstream SJR
- Generated a draft model grid for the hydrodynamic & water quality modeling
- Started linking DSM2 model output to hydrodynamic model for BC

HydroQual Model Grid & DSM2 Nodes

Preliminary Model Grid (Entire Study Area)

Jersey Island to Turner Cut

Turner Cut to DWSC

DWSC to Vernalis

SOD & Nutrient Fluxes

- Sediment oxygen demand (SOD)
- Sediment nutrient fluxes
 - NH₃ typically from sediment into water
 - PO₄ varies depending on water DO level
 - NO₃ typically from water into sediment
 - ♦ N₂ typically from sediment into water
- Measured rates will be used to calibrate the sediment flux submodel

Eutrophication: Nutrients

Nitrogen

- $OrgN \textcircled{\scales} \circledast H_3 \textcircled{\scales} \circledast NO_3 \textcircled{\scales} \circledast NO_2$
- K_M mineralization rate of OrgN to NH₃
- K_{nitr} nitrification rate of NH₃ to NO₂+NO₃
- ♦ K_{denitr} denitr. rate of NO₂+NO₃ to N₂ gas
- Phosphorus
 - $OrgP \textcircled{W} \textcircled{W} \textcircled{P} O_4$
 - ♦ K_M mineralization rate of OrgP to PO₄

Carbon (BOD), Reaeration

- **Carbon** $Carbon(BOD) \otimes {}^{\mathbb{M}} \circledast O_2$ consumption
 - ♦ K_d carbon (BOD) oxidation rate
- Reaeration

$$K_a \square \frac{K_L}{H}$$

- ♦ K_L oxygen transfer coefficient (L/T)
- Wind & velocity dependent
- All rates are temperature dependent

Algal Kinetics

• Algal growth is a function of:

- Temperature
- Available light
- Available nutrients (NH₃, NO₂+NO₃ & PO₄)
- Algae produce oxygen during photosynthesis
- Algal mortality occurs due to:
 - Respiration
 - Zooplankton grazing
 - Algae consume oxygen during respiration
- Algal death also recycles nutrients & OrgC

Algal Kinetics (cont.)

- Algal growth & respiration rates
 - Can be estimated from light & dark bottle studies, literature, previous modeling studies, literature
- Zooplankton grazing rate
 - Estimate from zooplankton levels, model calibration
- Is information available on algal species?

Water Quality Model Inputs

Solar radiation / photoperiod

- Measurements
- Secchi depth / light extinction
 - Measurements
- Settling rates for algae, part. N/P/C
 - Literature, measurements, calibration
- N/C, P/C, C/Chla ratios for algal kinetics
 - Literature, measurements, calibration
- Reaction rates
 - Literature, measurements, calibration

Questions & Answers

5

