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Executive Summary

INTRODUCTION
This report describes the results of research conducted to determine the sources
and causes of oxygen demand in the San Joaquin River Deep Water Channel
(DWC) downstream of Stockton during the summer and fall of 2001. The
research was funded by a CALFED Directed Action grant and was a continuation
of CALFED Category lll funding in 2000. The information from this research is
needed by CALFED, the public, government agencies, and San Joaquin River
stakeholders to determine the cause of oxygen depletion to below the US EPA
water quality criteria of 5 mg/L in the river and develop management plans to
eliminate the problem.

The research was designed to address the following questions:
¢ What was the spatial and temporal variation of dissolved oxygen
and associated water quality variables in the DWC during 2001?
o What was the contribution of plankton production rate compared
with other local and upstream sources to oxygen demand in the
DWC?
e What mechanisms influenced oxygen demand in the DWC?

WATER QUALITY
Dissolved oxygen concentration frequently decreased to 3 mg/L. and was
commonly below the U. S. EPA water quality criteria of 5 mg/L throughout the
summer and fall of 2001 in the DWC near Rough and Ready Island. Dissolved
oxygen concentration was also frequently below the 6 mg/L standard for
September through November set by the State of California Regional Water
Quality Control Board Basin Protection Plan to protect fall run Chinook salmon.
Dissolved oxygen concentration was lowest near the bottom and not usually
associated with water temperature or salinity stratification. Dissolved oxygen
concentration was relatively lower in the dry year 2001 than the wet year 2000
and demonstrated the high intraannual variability of this water quality problem
that is produced by both diel and seasonal variation. '

Oxygen demand in the DWC was strongly influenced by the net plankton
production rate. Net plankton production rate measured the net growth of algae
and bacteria and was sufficient to remove an average of 0.26 mg/L oxygen per
day in the water column in the DWC between Turner Cut and Navigation Light 48
throughout the summer and fall. Most of this oxygen loss was caused by '
respiration of nitrifying bacteria. The loss of oxygen through plankton respiration
was reduced by the production of oxygen by algal photosynthesis that often
caused a small net gain of oxygen in the water column over the course of the
day. The growth of algae and the resulting oxygen production was limited by high
turbidity and a shallow mixing zone that restricted algal growth to the top 2 m of
the water column where only 20% of the surface irradiance was available for
photosynthesis. Algal growth in the photic zone increased the new algal biomass
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in the DWC by an average of 96 kg chlorophyll a /day. This was less than the
average net chlorophyll a load at CP of 43 kg/d.

Nitrogenous biochemical oxygen demand (NBOD) was the primary cause of
oxygen depletion in the DWC and produced from 50% to 80% of the total oxygen
demand in the DWC. NBOD was strongly correlated with dissolved ammonia
concentration (r = 0.78; 103 d.f.) that averaged 0.4 mg/L and reached as high as
1 mg/L. Dissolved ammonia concentration also accounted for 60% of the
variation in biochemical oxygen demand (BOD) in stepwise multiple regression
models. This was twice as much as the variation accounted for by carbonaceous
BOD.

The Stockton Regional Water Treatment Control Facility (RWCF) discharge and
upstream organic nitrogen load were two major sources of the dissolved
ammonia in the DWC. Dissolved ammonia concentration was produced directly
through dissolved ammonia load and indirectly through the oxidation of organic
nitrogen. The strong correlation between the dissolved ammonia load from the
RWCF and ammonia concentration and NBOD in the DWC compared with weak
correlation for the organic nitrogen from upstream suggested the RWCF was a
significant contributor to dissolved ammonia concentration in the DWC. Further
evaluation of the source loads using a mass balance model indicated that the
dissolved ammonia discharge from the RWCF could contribute a significant

- percentage of the dissolved ammonia in the DWC for residence times up to 25
days. This was true even though the total nitrogenous load from upstream was
much higher than from the RWCF because the decay rate of the large upstream
organic nitrogen load to dissolved ammonia was slow and most of the organic
nitrogen was already highly decomposed. The relative contribution of the RWCF
and upstream nonpoint load was a function of the total load, load composition,
ammonification rate and residence time. Therefore either source could drive the
oxygen demand on any given day.

ENVIRONMENTAL FACTORS

The magnitude of the oxygen demand in the DWC was influenced by many
environmental factors. Light limitation in the DWC strongly reduced the influence
of algal production rate on oxygen availability. High suspended sediment
concentration restricted light penetration to the upper 2 m where only about 20%
of the surface irradiance is available for photosynthesis. These low light levels
reduced the photosynthetic potential of algae and restricted oxygenation from
photosynthesis that attain maximum rates of photosynthesis near 50% of surface
irradiance. Unlike many aquatic environments, algal growth was not limited by
macronutrients such as dissolved inorganic nitrogen, orthophosphate and silicate
that were an order of magnitude higher than limiting levels.

Net tidal transport was another major environmental factor that affected oxygen
demand in the DWC. The retention time of the upstream organic and inorganic
load into the DWC was often long because of rapid settling rate, slow



Sources of Oxygen Demand Lehman

downstream transport and slow net transport rate nearer the bottom than
surface. High retention rate of both particulate and dissolved substances allowed
oxidation of these substances in the DWC and the associated oxygen demand.

The oxygen demand potential of the upstream load was an important component
of the oxygen demand in the DWC. A decrease in carbon to nitrogen molar
ratios, increase in phaeophytin concentration, decrease in chlorophyll a
concentration and change in algal species composition between upstream and
downstream stations suggested the composition of the organic load between
Mossdale and the DWC was often transformed to more oxidized material with
less oxygen demand as it moved downstream. The magnitude and seasonal
variability of this oxidation in relation to environmental factors is still unknown.
Potential contributing factors include high respiration rate, settling, and
zooplankton or benthic herbivory, turbidity, water temperature, salinity and algal
species composition.

RECOMMENDATIONS

Additional research is needed to quantify the relative contribution of the dissolved
ammonia discharge from the RWCF and other local and upstream loads of
carbonaceous and nitrogenous substances to oxygen demand in the DWC. This
will require additional measurements of the ammonification rate of the various
organic nitrogen sources that enter the DWC and nitrification rates of ammonia in
the DWC. Further information is also needed on the variation of ammonification
and nitrification rate of these loads with ambient environmental conditions
including water temperature, salinity and light. These oxidation processes need
to be evaluated on a real-time basis and will require more intensive field
measurements of the daily magnitude and composition of the upstream load. It
may also require real-time testing of the influence of different oxygen demanding
loads on dissolved oxygen concentration in the DWC through controlled field
experiments that remove the load from selected sources for extended periods of
time.

Quantification of the relative contribution of RWCF and upstream load will require
accurate information on the net downstream transport of oxygen demanding
material from upstream of the DWC. A primary goal should be to obtain accurate
information on the downstream transport of oxygen demanding material between
Mossdale and the DWC and the oxygen demand potential of this material
compared with local sources. Local sources include the RWCF and Turning
Basin. Accurate information is also needed on how much of the oxygen
demanding material at Mossdale is transferred from sources farther upstream.

More information is needed to quantifying the potential contribution of in situ algal
photosynthesis to oxygen availability in the DWC. This will require additional
information on the relative contribution of algal and bacterial respiration to the net
plankton production rate of oxygen and how this varies with environmental
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conditions such as day length, water temperature, turbidity, photic zone depth
and vertical mixing. This information is vital to development of successful
management alternatives that will not inhibit the positive contribution of algal
growth rate processes to oxygen concentration in the DWC.

Dissolved oxygen concentration demonstrated high variability on diel, seasonal
and interannual time scales. Understanding this variability in relation to causal
factors including residence time, water temperature, turbidity, algal growth rate,
algal species composition, load composition and tidal transport will be important
to an evaluation the existing conceptual model and efficacy of management
alternatives and management models. Additional continuous monitoring stations
and more thorough analysis of existing continuous monitoring data are needed to
fully characterize the dissolved oxygen problem and evaluate controlling
mechanisms.

Three years of specialized data and a 30-year record of water quality monitoring
data in the San Joaquin River provide a wealth of information from which to
examine mechanisms and management alternatives. The accelerated schedule
of the 1999 to 2001 research program provided little time to examine the new
data in relation to historical data or to fully integrate the new data from the
various research projects. More resources should be allocated to further
analysis of the existing data before collection of new data begins.
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. Introduction

OVERVIEW

Dissolved oxygen concentration below 5 mg/L has occurred in the 10-mile reach
of the San Joaquin River Deep Water Channel (DWC) below the city of Stockton
from 20 to 60 percent of the time over the past 30 years during the summer and
fall (Lehman and Ralston 2000). Because dissolved oxygen concentration below
5 mg/L violated the U. S. EPA national water quality criteria for ecosystem health,
the DWC was placed on the Clean Water Act 303d list of impaired water bodies.
In addition, research by the Department of Fish and Game in 1970 (Hallock et al.
1970) suggested dissolved oxygen concentration less than 6 mg/L may
adversely impact upstream migration of fall run Chinook salmon, and
endangered species. As a result, the California Central Valley Regional Water
Quality Control Board set an additional dissolved oxygen standard of 6 mg/L
between September and November for the protection of Chinook salmon.

In 1998, representatives of the environmental community served the U.S. EPA
with an intent to sue because the dissolved oxygen condition in the DWC had not
been eliminated despite the 303d listing. The U. S. EPA then set December
2002 as the deadline for completion of an allocation of responsibility or TMDL
(total maximum daily load) and implementation plan by the California Central
Valley Regional Water Quality Control Board. As a part of this process, San
Joaquin River stakeholders decided it was in their best interest to develop the
allocation of responsibility and implementation plan and established the San
Joaquin River TMDL steering and technical committees.

The technical committee with direction from the steering committee identified
missing information needed to determine the cause and sources of oxygen
depletion in the DWC and assist development of management models and
solution alternatives. These needs lead to locally funded research in 1999 and
CALFED Bay-Delta Ecosystem Restoration Program funded research in 2000
and 2001.

This report summarizes research conducted in 2001 by the California
Department of Water Resources to determine the sources of oxygen demand in
the DWC between July and October 2001 and was an extension of similar
research done in 1999 and 2000.

The research was designed to address the following questions:
e What was the spatial and temporal variation of dissolved oxygen
and associated water quality variables in the DWC during 20017?
¢ What was the contribution of plankton production rate compared
with other sources to oxygen demand in the DWC?
e What mechanisms influence oxygen demand in the DWC?

14
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CONCEPTUAL MODEL

The low dissolved oxygen in the DWC was hypothesized to be caused by five
factors including the small surface to volume ratio of the DWC, load of oxygen
demanding substances from the Stockton RWCF, load of oxygen demanding
substances from the upper San Joaquin River watershed, low streamflow and
summertime environmental conditions (Bain and Pierce 1968; Brown and
Caldwell 1970). Recent analyses suggested the causes have not changed since
the 1960s (U. S. ACE 1988; Lee and Jones-Lee 2003).

However, a long-term decrease in algal biomass in the DWC and concurrent
decrease in algal load from upstream suggested these hypotheses were not
based on similar oxygen demand conditions. Average chlorophyil a concentration
was 100 ug/L in the DWC (Lehman 1990; 1996a, b; Lehman et al. 2001) and two
times 2 higher upstream in the 1970s (Lehman et al. 2001). This high algal
biomass supported the early hypothesis that algal biomass was a significant
factor controlling the long-term pattern of low dissolved oxygen concentration in
the summer and fall in the 1970s. However, the factor of 4 decrease in
chlorophyll a concentration in the DWC and upstream since 1970 (Lehman 1992)
suggested algal biomass may be less important to oxygen demand today than
historically.

A pilot study in 1999 indicated low dissolved oxygen concentration was common
in the DWC and had a wider geographical range than previously measured. In
addition, NBOD transport from upstream was identified as a larger source of
oxygen demand in the DWC than CBOD from algal biomass (Lehman and
Ralston 2000).

Research in 2000 again identified the primary source of oxygen demand in the
DWC as nitrogenous (Lehman et al. 2001; Litton and Nikaido 2001) and a strong
associated between BOD in the DWC and dissolved ammonia concentration
(Lehman et al. 2001). Sources of dissolved ammonia included direct load of
dissolved ammonia and the oxidation of organic nitrogen from both the RWCF
and nonpoint sources upstream. However, the largest potential nitrogenous
source was identified as the oxidation of organic nitrogen from nonpoint sources
upstream.

This report describes research conducted in the summer and fall of 2001 to
further quantify the source and cause of oxygen depletion in the lower San
Joaquin River DWC. Continuous and discrete monitoring was used to
characterize the dissolved oxygen concentration and associated water quality
conditions in the DWC. Field and laboratory studies were conducted to
determine the daily contribution of algal growth in the DWC to oxygen demand
compared with the load of carbonaceous and nitrogenous oxygen demanding
substances from local and upstream sources. Statistical and mass balance
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models were used to quantify the relative contribution of local and upstream
sources to oxygen demand. This research provided a third year of information
and second year of intensive field sampling needed to assess the relative
contribution and variability of local and imported sources of organic and inorganic
substances and environmental conditions on oxygen demand in the DWC.

This research was funded by a CALFED Bay-Delta Ecosystem Restoration
Program research grant.

Il. WATER QUALITY CONDITIONS

INTRODUCTION
Water quality conditions associated with the low dissolved oxygen concentration
in the DWC and nearby locations were characterized by discrete and continuous
water quality monitoring in the summer and fall of 2001. Sampling was conducted
in the lower San Joaquin River downstream of the City of Stockton at four
stations: Turner Cut near Navigation Light 24 (TC), Navigation Light 43 near
Rough and Ready Island (RR), Navigation Light 48 near Channel Point (L48) and
the Turning Basin (TB) (Fig. [I-1). Upstream water quality conditions were
monitored at four stations in the San Joaquin River upstream of the DWC: at the
Rough and Ready Island highway bridge just upstream of Channel Point (CP),
Mossdale (MD), Vernalis (VN) and Crows Landing (CL).

CONTINUOUS WATER QUALITY PROFILES

Introduction - Continuous monitors measured dissolved oxygen concentration
and related water quality variables in the DWC and at upstream stations
throughout the summer and fall. These data were used to describe the
magnitude and variability of the dissolved oxygen problem and its relation to
water quality variables.

Methods_- Continuous water quality monitoring was conducted at 1 m depth at
stations TC, RR, TB, CP and MD (Fig. llI-1). Water quality measurements were
taken with two types of continuous monitoring systems. At stations RR and MD,
measurements were made with a Schneider multi-parameter water quality
monitoring system. This monitoring is part of the long-term continuous monitoring
program operated by the California Department of Water Resources (DWR) and
measured specific conductance, pH, dissolved oxygen and water temperature.
Chlorophyll a fluorescence was measured with a Turner 10 fluorometer and
calibrated with laboratory analyses of extracted chlorophyll a.

The DWR continuous monitoring systems were verified every 10 days. In

addition, water quality probes were automatically cleaned each day at midnight.
The error associated with dissolved oxygen concentration was 0.15-0.20 mg/L.

16
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Additional information on the quality assurance and control procedure is available
at URL: http:// iep.water.ca.gov under DWR continuous water quality monitoring.

The permanent DWR continuous monitoring grid was enhanced with YSI 6600
continuous water quality monitors placed at the surface (1 m) of TC, TB and CP
and 1 m from the bottom of RR and TB (Fig. 1l-1). The YSI 6600 water quality
monitors measured turbidity (NTU), specific conductance (uS/cm), dissolved
oxygen concentration (mg/L), water temperature (°C) and chlorophyll
fluorescence (percent fluorescence) at 15 min intervals. A pulsed dissolved
oxygen and fluorescence measuring system and self-cleaning mechanisms on
the fluorometer and turbidity probes minimized the impact of low flow near the
probe and environmental fouling. Accuracy of the YSI 6600 monitors was verified
with either an YSI 85 or freshly calibrated YSI 6600 within one to two week
intervals and each machine was calibrated monthly. The error associated with
the YSI dissolved oxygen measurement was 0.2 mg/L.

Results - Daily average water temperature in the DWC at TC and RR reached a
maximum of 28°C in June, but was about 25 °C most of the summer season until
temperature dropped to 20 °C in October (Fig. lI-2a,b,c). At the Turning Basin
both surface and bottom water temperature were somewhat higher than in the
DWC and average water temperature near 26 °C was common through August
(Fig. ll-2d,e). Again water temperature decreased to below 20°C in October.
Similar water temperature was measured upstream of the at CP and MD (Fig. II-

21,9).

The highest daily average dissolved oxygen concentration in the DWC occurred
at TC, the downstream boundary of the DWC study reach (Fig. lI-2a). Here daily
average dissolved oxygen concentration was commonly 6 mg/L. Average daily
dissolved oxygen concentration was 1 to 2 mg/L lower at the surface and
commonly below 5 mg/L near the bottom just upstream at RR (Fig. 11-2b) (Fig. II-
2 ¢). Low dissolved oxygen concentration at night accompanied by high
concentration during mid-day suggested the diel variability was associated with
algal photosynthesis. The influence of photosynthesis on dissolved oxygen
concentration was supported by the coincident daytime increase in both pH and
chlorophyll a concentration.

Average dissolved oxygen concentration was consistently above 5 mg/L at the
surface of the Turning Basin where chlorophyll a concentration was commonly
the highest in the DWC (Fig. lI-2d). In contrast, average dissolved oxygen
concentration was consistently below 5 mg/L and often reached below 2 mg/L
(Fig. 11-2e). Again the coincident variation of dissolved oxygen concentration, pH
and chlorophyll a concentration suggested photosynthesis was an important
factor controlling dissolved oxygen concentration near the surface.

In the San Joaquin River upstream of the DWC at MD, high algal growth and
strong vertical mixing kept dissolved oxygen concentration above 5 mg/L (Fig. Ii-

17
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2 g). In contrast, dissolved oxygen concentration decreased to below 5 mg/L in
September and October at CP just upstream of the DWC (Fig. II-2 f). Diel
variation was large upstream of the DWC and dissolved oxygen concentration
varied by up to 5 mg/L each day. Again, coincident diel variation of chlorophyll a
concentration and pH suggested photosynthesis was an important factor
controlling diel variation.

VERTICAL WATER QUALITY PROFILES

Introduction - Vertical profiles described the water quality conditions throughout
the water column during discrete sampling at each station. These profiles
provide information regarding the role of stratification in the formation of oxygen
depletion and the spatial variability of water quality conditions.

Methods - Monthly vertical profiles of water quality conditions were made using a
freshly calibrated YSI 6600 water quality monitor. Variables measured included
dissolved oxygen (mg/L), specific conductance (uS/cm), pH (unit), turbidity (NTU)
and chlorophyll fluorescence (volts).

Results - Dissolved oxygen concentration less than 5 or 6 mg/L often
characterized the water column between TC and L48 in the summer and fall (Fig.
II-3a,b,c). The lowest dissolved oxygen concentration occurred in September
when values reached near 2 mg/L.. The absence of a strong or persistent vertical
gradient in water temperature, specific conductance or suggested the low
dissolved oxygen near the bottom was not caused by a physical barrier to vertical
mixing created by stratification. Instead, the higher water temperature, pH and
chlorophyll a concentration near the surface suggest the dissolved oxygen
gradient was a function of slow diffusion of oxygen produced by photosynthesis
and surface aeration to the bottom and high respiration of organic and inorganic
material near the bottom. A strong coincident vertical gradient in water
temperature and dissolved oxygen concentration was measured on September
14 and suggests that stratification may be important on a short-term basis.

In contrast, a strong vertical gradient occurred at TB where dissolved oxygen
concentration, pH, water temperature and chlorophyll a concentration decreased
by a factor of 2 from top to bottom (Fig. I-3d) and dissolved oxygen
concentration was often less than 3 mg I'' near the bottom. The strong vertical
gradient in these water quality variables suggested stratification restricted
aeration from vertical mixing. However, the constant specific conductance with
depth and relatively small gradient in water temperature suggested the vertical
oxygen gradient was influenced by respiration near the bottom.

There was no vertical gradient in water quality conditions in the shallow water
column of the San Joaquin River upstream of the DWC near CP where turbulent
mixing was strong (Fig. 11-3e). Yet, despite the strong turbulent mixing and high
chlorophyll a concentration dissolved oxygen concentration was often below 5
mg/L in September and October.
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lll. Sources of Oxygen Demand
HISTORICAL OXYGEN DEMAND

Chlorophyll a concentration, a measure of algal biomass, was measured by the
CA Department of Water Resources and U. S. Bureau of Reclamation in the San
Joaquin River on a monthly or semi-monthly basis at 1 m depth since 1970
(Lehman 1996 b). These data indicate that chlorophyll a concentration is four
times lower in the DWC currently than in the 1970s and suggests algal biomass
may be less important to the current dissolved oxygen demand than historically
(Fig. 111-1). A reduced contribution of algal biomass to the oxygen demand in the
San Joaquin River was supported by a factor of 2 decrease in the algal load at
VN, the tidal head of the estuary (Fig. 111-2).

PLANKTON PRODUCTION AND RESPIRATION RATE

Introduction - The plankton community consists of algae and bacteria that
through growth and respiration affect the daily oxygen concentration in the water
column. Daily plankton production and respiration rate measurements conducted
between June and October 2001 in the DWC and San Joaquin River upstream of
the DWC were used to determine the contribution of in situ photosynthesis and
respiration by nitrifying bacteria to oxygen demand in the DWC.

Methods — Net plankton production and respiration rate was measured by
dissolved oxygen light and dark bottle in situ incubation. Water samples were
overflowed three times into replicate light and dark bottle glass-stoppered 300 ml
BOD borosilicate bottles. Bottles were incubatedina1.6 mX 1.3 m X 0.6 m
Plexiglas open-air continuous flow through incubator that utilized ambient surface
irradiance and river water to produce the natural diel pattern of light and water
temperature at RR Island. Incubations were run for 24 hr (Vollenweider 1974)
and continuous pumping of river water from the DWC through the chamber
maintained water within 0.5 °C of the water temperature at 1-m depth. Diel
changes in surface irradiance and chamber light were monitored with an Eppley
pyroheliometer and LiCor quantum sensor.

Net plankton production rate was measured as the change in dissolved oxygen
concentration in light bottles over the incubation period. Plankton respiration was
measured as the change in dissolved oxygen concentration in dark bottles over
the incubation period. Dissolved oxygen concentration was measured by a YSI
5000 dissolved oxygen meter fitted with a dissolved oxygen probe and stirrer.
Dissolved oxygen concentration was verified with Winkler titration. Samples for
Winkler titration were fixed in the field by addition of magnanous sulfate and
bottles were kept cool and in the dark until titration within 24 hr. Addition of
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alkaline azide and sulfamic acid just before titration reduced the interference of
organic material on the analysis (APHA et al. 1989; Carignan et al. 1998).

The oxygen demand in the DWC (kg/d) from plankton growth was estimated from
net plankton production rate measured at TC, RR and L48. The percent
contribution of nitrifying bacteria to plankton respiration was estimated by
multiplying the NBOD/ BOD ratio from the laboratory BOD tests conducted for
each sampling day times the in situ plankton respiration rate. Net oxygen
production from algal growth (phytoplankton growth plus non-nitrifying bacteria)
in the photic zone was estimated by the net plankton production rate plus the
estimated respiration rate from nitrifying bacteria. Algal respiration in the water
column was estimated as the difference between plankton respiration rate and
the respiration rate of nitrifying bacteria. Total oxygen demand in the DWC (kg
oxygen/day) was based on the volume of water between TC and L48.

Water samples for ancillary water quality measurements included dissolved
ammonia (NH4-N), nitrate and nitrite, total phosphorus (TP), dissolved
orthophosphate (ortho-P), chlorophyll a, phaeophytin, total and dissolved organic
carbon (TOC and DOC), total Kjeldahl nitrogen concentration (TKN), biochemical
oxygen demand (BOD), nitrogenous BOD (NBOD) and carbonaceous BOD
(CBOD) and phytoplankton species composition. Non-ammonia TKN, commonly
referred to as organic nitrogen, was calculated as the TKN minus dissolved
ammonia. Water samples for all water quality analyses were collected using a
Van Dorn water sampler. Water samples were processed immediately after
collection and stored at 4°C or frozen until laboratory analysis. Laboratory
methods for water quality variables are described in Appendix A. Phytoplankton
species were preserved and stained with Lugol’s solution and enumerated and
identified using the inverted microscope technique (Utermohl 1958).

Ancillary field measurements at each sampling station included vertical profiles of
light attenuance using a LiCor quantum sensor and specific conductance,
chlorophyll a fluorescence, pH, water temperature and turbidity using an YSI
6600 water quality monitor.

Results - Average net plankton production rate in the photic zone ranged from 2
to 6 mg oxygen/L/day in the DWC and increased with distance upstream to 8 mg
oxygen/L/day at CL (Fig. llI-3). This increase was accompanied by an increase in
the average plankton respiration rate from 1 mg oxygen /L/ day in the DWC to a
little over 2 mg oxygen / L/day upstream (Fig. llI-4). Although the net plankton
production rate was higher upstream of the DWC, the net plankton production
rate per unit algal biomass was lower (Fig. 11I-5).

Plankton production rate usually produced an average net gain of oxygen in the
photic zone of the DWC where light in the water column enables photosynthesis
to occur Table I11-1. However, most of the water in the DWC is in the aphotic
zone and does not receive sufficient light for photosynthesis. Here respiration
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dominates plankton production rate. As a result the combined daily photic and
aphotic zone plankton production rate caused a net loss of oxygen from the
water column of 4042 kg/d; an average oxygen demand of 0.26 mg/L. Most of
this oxygen demand was produced by the respiration of nitrifying bacteria. The
estimated loss of oxygen from bacteria in the DWC was 0.59 mg oxygen/L/day
and contrasted with the gain of oxygen associated with the average net algal
production rate of 0.33 mg/L/day (Table III-2).

NITROGENOUS OXYGEN DEMAND

Most of the plankton respiration in the DWC was caused by nitrification. Between
50% and 80% of the BOD in the study reach was associated with NBOD (Fig. llI-
6 a-h). The percentage contribution of NBOD to BOD increased with distance
upstream between TC and CP.

The nitrogenous BOD in the DWC was most closely associated with dissolved
ammonia concentration. Pearson correlation coefficients confirmed the high and
significant correlation between dissolved ammonia concentration and both BOD
and NBOD in the DWC (Table 1lI-3). In contrast, the correlation between organic
nitrogen and both NBOD and BOD was comparatively low.

In stepwise multiple regressions conducted with water quality variables,
dissolved ammonia concentration and carbonaceous BOD accounted for 91% of
the variation in BOD. Of these two independent variables, dissolved ammonia
accounted for 60% of the variance compared with CBOD that accounted for a
maximum of 30% (Table Ili-4).

The CBOD was probably produced by algal biomass because CBOD and total
pigment concentration were strongly correlated (r = 0.81; 103 d.f). In addition,
substitution of CBOD by total pigment concentration in the stepwise multiple
regression models reduced the explained variance by only 5% (Table 111-4).
Similar results were obtained for 2000 data (Lehman et al. 2001).

Correlation analysis suggested RWCF load was the major factor controlling the
variation in BOD. Dissolved ammonia load from the RWCF was correlated with
dissolved ammonia concentration at both RR and CP just upstream of the DWC
(Fig. I1-7) and NBOD at RR (Figure 11I-8). This was surprising because the
potential oxygen demand from oxidation of the organic nitrogen load from
upstream was many times larger than the load from the RWCF (Fig. 111-9). The
subsequent ammonification and nitrification of this large upstream load should
have masked the small dissolved ammonia load from the RWCF, but did not.
The poor association between the organic nitrogen load from upstream and both
dissolved ammonia concentration (r = 0.34, 103 d.f.) and NBOD (r = 0.34, 103
d.f.) was confirmed by correlation analysis (Table IlI-2) and trend plots (Fig. lli-
10).
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The importance of local sources of nitrogenous oxygen demand to low dissolved
oxygen in the DWC was supported by the decreased percentage contribution of
nitrogenous BOD to the total with distance upstream. Nitrification accounted for
40-50% of the total BOD at MD and this percentage decreased to 10% to 20%
near CL (Fig. 111-6).

COMPOSTION AND OXYGEN DEMAND OF UPSTREAM MATERIAL

Introduction - The concentration of oxygen demanding substances measured at
stations throughout the DWC and upper San Joaquin River were compared in
order to determine the relative contribution of oxygen demanding substances
from upstream and downstream sources.

Methods - Water samples for measurement of ammonia, nitrate and nitrite, total
phosphorus, dissolved orthophosphate, chlorophyll a, phaeophytin, TOC, DOC,
TKN, 5 day (BODS5) and 10 day (BOD10) total and dissolved BOD, 5 day
(CBOD5) and 10 day (CBOD10) total and dissolved CBOD, and phytoplankton
species composition were collected semi-monthly to monthly at 1 m depth using
a Van Dorn water sampler. Water samples were processed immediately after
collection and stored at 4°C or frozen until laboratory analysis described in
Appendix A.

Concentration — The concentration of water quality variables and their
associated oxygen demand varied seasonally and were highly variable among
stations. BOD was higher upstream early in the season and downstream late in
the season (Fig. Ill-1 a-e). However, the lowest BOD occurred consistently at TC
near the downstream boundary of the study reach. High BOD at CP reflected the
presence of high concentrations of carbonaceous and nitrogenous oxygen
demanding substances including algal pigment, organic nitrogen, dissolved
ammonia, DOC, TOC and VSS concentration. TOC concentration was similar
among stations but DOC increased with distance upstream and comprised the
largest fraction of the TOC at CL. VSS, a measure of organic carbon, was also
consistently higher in the upper San Joaquin River. However, unlike other
substances that described oxygen-demanding substances there was no
consistent concentration pattern among stations or seasons. In addition, it did
not appear to be a direct function of TSS. TKN concentration was a large
potential source of NBOD and was fairly stable among stations and ranged from
1 to 2 mg/L. The variability in the TKN was primarily caused by the variability in
dissolved ammonia concentration. CBOD was probably strongly influenced by
the magnitude of chlorophyll a concentration that was consistently higher
upstream than downstream (Fig. 11l 1 a-e).

Composition - The total organic carbon to total organic nitrogen molar ratio was
used to provide insight into the nature of the organic substances upstream. If all
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of the organic material in the water column was derived from algae then the
carbon to nitrogen molar ratio should be about 6.6 (Redfield 1958). The carbon to
nitrogen ratio at the farthest upstream station near CL was near this idealized
ratio (Fig. I1I-12). The decrease in these ratios with distance downstream
suggested the organic material in the water column underwent change during
downstream transport. However, they were still within the range of values for
algal biomass. Most of this algal biomass was highly oxidized and could not be
identified by algal pigment concentration. Live and detrital algae measured as
chlorophyll a plus phaeophytin pigment concentration averaged only 20% to 40%
of the organic carbon and 20% of the organic nitrogen among stations (Fig. lll-
13).

IV. Environmental factors

AMMONIFICATION RATE

Introduction - The rate at which organic nitrogen is oxidized to ammonia is
called the ammonification rate. Quantification of the ammonification rate and its
impact on the oxidation of organic nitrogen in the DWC was developed in order to
gain an understanding of the relative contribution of upstream nonpoint versus
the Stockton RWCF inorganic and organic nitrogen load to dissolved ammonia
concentration in the DWC.

Method - A simple mass balance model was developed to estimate the relative
contribution of dissolved ammonia and organic nitrogen load from upstream and
the RWCF to the dissolved ammonia concentration in the DWC at residence
times of 1 to 25 days. Nitrogenous loads were estimated from weekly to
biweekly measurements of dissolved ammonia and organic nitrogen at MD by
the Department of Water Resources and daily dissolved ammonia and biweekly
organic nitrogen measurements at RWCF by the City of Stockton. The daily total
dissolved ammonia load from each source was estimated by the sum of the
dissolved ammonia load plus the dissolved ammonia load produced from
ammonification of organic nitrogen. The ammonification rate was determined
from laboratory measurements of the oxidation of chlorophyll a to dissolved
ammonia at five day intervals over a period of 30 days and was approximately
0.15 mg N/ mg chlorophyll a /L/d at 20°C (Fig. IV-1). Oxidation of chlorophyll a
should represent the fastest ammonification rate because most of the organic
nitrogen in the river was of algal origin.

Two model scenarios were examined in order to set upper and lower bounds on
the percent contribution of each source to the dissolved ammonia in the DWC.
Model run 1 assumed all of the organic nitrogen oxidized at the maximum
ammonification rate for chlorophyll a concentration and the ammonification rate
was adjusted to ambient water temperature using a linear transformation. The
combined dissolved ammonia load (AL) in kg/d from direct addition of dissolved
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ammonia and oxidation of organic nitrogen over a residence time of n days was
computed as

2 (AL,)= DA, + (r)(ONp) + (r)(RONy.1)

where DA, is the dissolved ammonia load (kg/d) on day n, (r)(ON,) was the
dissolved ammonia load from the oxidation of organic nitrogen (ON, kg/d) on day
n based on the ammonification rate r (mg N/mg chlorophyll a /L/d), and (r)(RON,.
1) was the dissolved ammonia load (kg/d) from oxidation of the residual organic
nitrogen (RON .1 kg/d) from the preceding day, n-1.

Model run 2 assumed only the percentage of the organic nitrogen load
composed of chlorophyll a (pchl) oxidized at the maximum ammonification rate of
chlorophyll a and that this rate was a linear function of water temperature above
20°C. The ammonia load over n days was computed as:

3 (AL, )=DA, + (r }(pchl)(ON, ) + (r)(pchl)(RONp-1)

Significant difference between the percentage of the accumulated dissolved
ammonia in the DWC contributed by the RWCF and the upstream load at MD at
each water residence time was identified using the Wilcoxon Man-Whitney
nonparametric test.

Results - The relative contribution of the RWCF and upstream load to the
dissolved ammonia concentration in the DWC was strongly influenced by the
ammonification rate. When only the linear correction for water temperature was
applied to the ammonification rate, the combined dissolved ammonia load from
the direct addition of dissolved ammonia plus the decomposition of organic
nitrogen was significantly higher (p < 0.01) for the RWCF than upstream at MD
on a daily basis in the DWC (Table IV-1). This occurred even though the organic
nitrogen load from upstream was significantly higher than the RWCF, because
the ammonification rate was too slow on a daily basis to release as much
dissolved ammonia as the direct dissolved ammonia input from the RWCF. This
may patrtially explain why the weekly average RWCF load was significantly
correlated with both the dissolved ammonia concentration (r = 0.56, p < 0.01,
n=32) and NBOD (r = 0.74, p < 0.01, n=32) at RR, but the weekly average load
at MD was not significantly correlated with either the dissolved ammonia
concentration or NBOD.

However, as the water residence time increased in the DWC, the relative
contribution of the upstream load to oxygen demand increased because there
was more time for the accumulated organic nitrogen load in the DWC to be
converted to dissolved ammonia by ammonification. In fact, it took a residence
time of about 10 days for the percentage of the accumulated dissolved ammonia
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load from upstream to exceed the accumulated dissolved ammonia load from the
RWCF (model run 1;Table IV-1).

The assumption in model run 1 was that all of the organic nitrogen was
oxidized to dissolved ammonia at the maximum rate measured for the
ammonification of chlorophyll a concentration. However, chlorophyll a
concentration only contributed 21% to 62% of the organic nitrogen load at MD
between July and October in 2001 (Fig IV-2). As a result, the conversion of
organic nitrogen to dissolved ammonia in model run 1 represented an upper limit
of the contribution of the upstream load to dissolved ammonia in the DWC.

The RWCF was the primary source of dissolved ammonia to the DWC for
residence times of 1 to 25 days when the organic nitrogen load was adjusted to
account for only the percent composition of chlorophyll a concentration (model
run 2; Table IV-1). Model run 2 probably represented the lower limit of the impact
of ammonification on the release of ammonia from organic nitrogen because
there was probably some decomposition of algal detritus and non-algal material.
However, this lower limit was probably closer to the actual influence of
ammonification on the dissolved ammonia load because the organic nitrogen
load primarily consisted of phytoplankton biomass that was already highly
oxidized. The total organic carbon to organic nitrogen molar ratios from 4 to 6 at
MD were near the range of 5 to 8 that characterize phytoplankton (Redfield
1958). Stable isotope analysis confirmed that the organic nitrogen load from
upstream was primarily of phytoplankton origin (Kratzer et al. 2003).

Water temperature was probably not a significant source of daily variation in
the nitrification rate in the DWC during most of the summer season. Water
temperature hovered near 25°C most of the summer and usually varied by only
one to two degrees each day. The largest change in water temperature occurred
in October when water temperature shifted downward to 20°C.

LIGHT LIMITATION

Introduction - Algal growth rates were measured at different light intensities in
order to determine the influence of light on plankton production rate in the DWC.
This is important management information because algae are light limited in the
San Joaquin River because of high suspended matter concentration.
Management alternatives that affect light availability could impact algal
production rate and the associated oxygen dynamics.

Method - Algal growth at varying light intensities was estimated by dissolved
oxygen light/dark bottle incubation (Vollenweider 1974). Replicate water samples
were overflowed three times into light and dark bottle 300 ml borosilicate BOD
bottles and incubated in a 1.6 m X 1.3 m X 0.6 m plexiglass open-air flow through
incubator. The incubator utilized ambient surface irradiance and pumped river
water to reproduce the natural diel pattern of light and water temperature.
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Continuous pumping of water from 1 m depth through the incubator coil system
maintained water temperature within 0.5 °C of ambient water temperature. Light
intensity of replicate water samples was varied by a series of screens to achieve
a light gradient. Diel change in surface irradiance and vertical light attenuance
were measured with an Eppley pyroheliometer and LiCor quantum sensor,
respectively.

Plankton production rate (mg oxygen /L/hr) and plankton production rate
normalized to chlorophyll a concentration (ug oxygen /ug chla/hr) was used to
generate plankton production rate versus light intensity curves that described the
maximum potential plankton production rate at different light intensities among
stations.

Results — Light limited plankton production rate in the DWC. Light extinction was
rapid and surface irradiance decreased to 1% within a depth of about 2 m (Fig.
IV-3). Algal photosynthesis only occurs in this portion of the water column called
the photic zone that averaged about 20% of the surface irradiance. Both the
maximum plankton production rate and the maximum production rate normalized
to chlorophyll a occurred when daily light intensity averaged between 0.05 cal/
cm?min and 0.10 cal/cm®min (Fig. IV-4). The similarity of the maximum light
intensity among stations suggested that light was a major limiting factor affecting
plankton production rate throughout the region.

Maximum algal production rates were actually higher than those measured
because the plankton production rate included respiration from nitrifying bacteria.
This may account for the higher plankton production rate at CL where dissolved
ammonia was low than in the DWC where dissolved ammonia was high.
NBOD/total BOD ratios suggested bacterial respiration averaged 54% of the total
(See Section ).

LIMITING NUTRIENTS ,
Both dissolved inorganic nitrogen (sum of the ammonia, nitrate and nitrite) and
orthophosphate concentration were consistently an order of magnitude higher
than limiting concentrations for the growth of algae at all stations (Fig. IV-5).
Limiting concentrations are about 0.1 to 0.2 mg/L for inorganic nitrogen and 0.01
to 0.02 for orthophosphate.

DOWNSTREAM TRANSPORT

Introduction - Uncertainty in the contribution of the RWCF and upstream load to
the oxygen demand in the DWC was associated with the influence of
downstream transport processes on the import and export of oxygen demanding
substances in the DWC. Both ebb and flood tide and spring and neap tidal
cycles affected the net transport of oxygen demanding substances in the DWC.
The largest uncertainty was associated with the net transport of oxygen
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demanding substances from MD 24 km upstream into the DWC and the net
transport of material even from farther upstream to MD.

Methods - The concentration organic and inorganic water quality variables on
ebb and flood tide was measured by discrete water samples by ISCO automatic
water quality samplers at CP and RR. Samples were taken each month on both
spring and neap tide. Water samples were analyzed for a suite of water quality
and biological variables including dissolved ammonia, nitrate plus nitrite,
orthophosphate, total phosphorus, TOC, DOC, TSS, VSS, chlorophyll a and
phaeophytin concentration, BOD, CBOD and algal species composition, cell
dimension and density. Algal cell dimensions were used to calculate cell carbon
(Strathmann 1967). Methods for these analyses are listed in Appendix A.

The net downstream transport of organic and inorganic material between CP and
RR was calculated as the product of each 15-min flow value (cfs) and the
concentration (mg/L) of the desired constituent during that time summed over the
day; units were converted to kg/day.

Results — The concentration of water quality variables measured on ebb and
flood tide often differed by many times at CP and RR and was an important factor
for the transport of organic material downstream (Fig. IV-6; Fig. IV-7 a,-b).
Organic constituents such as VSS, chlorophyll a concentration and both BOD
and CBOD were usually higher on ebb tide and contrasted with non-organic
constituents such as chloride, nitrate plus nitrite and orthophosphate
concentration that were similar among tides. In addition, bottom concentration
varied less with tide near the bottom than at the surface at RR (Fig. IV-7 a-b).

The net transport of material into the DWC from upstream at CP was positive and
was high for suspended materials like TSS that added 80,000 to 140,000 kg/day
to the DWC (Fig. IV-8). Very little of this TSS load was organic matter and only a
small fraction was live or detrital algae measured as chlorophyll a or phaeophytin
pigment concentration. Nitrogenous material load described by TKN was high
and 25-50% of this material was dissolved ammonia. These organic and
inorganic materials produced a BOD load from 10,000 to 20,000 kg/day.

The net transport of oxygen demanding substances, inorganic nutrients and
suspended sediment was usually downstream at RR and was a function of the
net downstream streamflow during the summer (Fig IV-9). The BOD exported
near the surface was at least 5000 kg/day and about a quarter to a half of this
was CBOD (Fig. IV-10 a). Downstream export of oxygen demand from algal
blooms was apparent at the beginning of July and October when CBOD was
about 60% of the BOD and coincided with downstream export of chlorophyill a,
VSS, TOC and DOC. TSS export was poorly associated with VSS or chlorophyll
a concentration. TKN export was fairly stable throughout the season and
dissolved ammonia concentration comprised 25% to 50% of the total.
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Net downstream material transport was lower near the bottom than the surface
(Fig. IV-10 b). Oxygen demanding substances may be trapped near the bottom
where horizontal velocities are slower than near the surface. This may be an
important mechanism by which oxygen-demanding substances are retained near
the bottom until their oxygen demand is fully expressed. The retention of
material near the bottom was demonstrated in July when chlorophyll a was
exported near the surface, but retained near the bottom.

Net transport between CP and RR confirmed the daily retention of oxygen
demanding substances in the DWC needed to facilitate the release of ammonia
through oxidation of organic material. On average, 61% of the chlorophyll a was
retained in the study reach. The average percentage retention of organic
nitrogen, BOD and dissolved ammonia was lower at 35-39% and more variable
than chlorophyll a (Table IV-2). The similar and short retention time of BOD and
dissolved ammonia reinforced the potential influence of ammonia load on daily
oxygen demand. Similarly, the relatively short average retention time of organic
nitrogen reinforced the importance of chlorophyll a concentration oxygen
demand.

The largest uncertainty in net transport was associated with the transport of
inorganic and organic material into the DWC from MD, 24 km upstream of the
DWC. The significantly (p < 0.05) higher chlorophyll a concentration at MD than
CP suggested there was a loss of live phytoplankton with transport downstream
(Fig. IV-11). In addition, the higher (p < 0.05) average phaeophytin concentration
at CP of 36.9 + 24.5 ug/L than MD of 17.6 + 4.6 ug/L suggested decomposition
of organic matter occurred during downstream transport. As a result, the
upstream organic nitrogen load calculated for MD probably represented the
maximum potential load from upstream.

Differences in algal species carbon between successive sampling stations also
suggested algal biomass was altered during transport downstream. Diatoms
comprised a large percentage of the algal species carbon composition at the
farthest upstream station CL (Fig. IV-12 a-d). The algal species carbon shifted
from diatoms at CL to green and bluegreen species or different diatoms at VN
and MD downstream. This suggested algal species changed, decomposed or
were replaced as they moved downstream toward the DWC. In contrast, the
source of algal species carbon in the DWC was clearly from stations near the
DWC. Algal species at RR matched diatom and green species at CP, the
bluegreen and green flagellate species at TB and the miscellaneous flagellate
and freshwater species at TC.

V. Summary/Discussion
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WATER QUALITY CONDITIONS

Dissolved oxygen concentration in the DWC was relatively low in 2001 as would
be expected in this warm-dry year. Both the daily average and daily minimum
dissolved oxygen concentration near RR was below 5 mg/L or 6 mg/L most of the
season between June and October and frequently decreased to less than 3
mg/L. The magnitude and duration of dissolved oxygen concentration episodes
below 5 mg/L was greater than in 2000 (Lehman et al. 2001) and more similar to
those measured in the dry year 1999 (Lehman and Ralston 2000). Historically,
dissolved oxygen concentration below 5 mg/L occurred more frequently during
low flow years (Lehman and Ralston 2000).

The lowest dissolved oxygen concentration occurred near the bottom. This
bottom minimum was not produced by persistent stratification near the surface
that prevented aeration through vertical mixing that is common in Chesapeake
Bay (Officer et al. 1984) and the Gulf of Mexico (Rabalais and Turner 2001).
Instead, water temperature usually decreased by only 1°C and specific
conductance was stable between the surface and bottom. A well-mixed water
column was also observed in 1999 (Lehman and Ralston 2000) and 2000 (Litton
and Nikaido 2001; Lehman et al. 2001). The vertical gradient in water
temperature measured on September 14 near the surface suggested vertical
stratification can occur. However, comparison of diel vertical profiles suggested
stratification near the surface in the late afternoon was gone by morning (Litton
2002).

OXYGEN DEMAND

NBOD was the major source of oxygen demand in the DWC and was most
closely associated with dissolved ammonia concentration that accounted for 60%
of the variation in BOD within stepwise multiple regression analysis. Similar
results were obtained for 2000 (Lehman et al. 2001). The large contribution of
NBOD to oxygen demand in the DWC was identified as early as the late 1960s
(McCarty 1969). Nitrification can directly control oxygen demand in the water
column when ammonia concentration is high (Berounsky and Nixon 1993; Brion
et al. 2000). This appeared to be the case in the DWC where dissolved
ammonia concentration averaged 0.4 mg/L and reached 1.0 mg/L.

RWCF was a major contributor to the NBOD produced by dissolved ammonia in
the DWC. This finding differed from the results of previous mass balance
calculations (Lee and Jones-Lee 2003). The importance of the RWCF load was
surprising because the organic nitrogen load from the upper San Joaquin River
was many times higher than the ammonia load from the RWCF. Ammonification
and nitrification of this upstream nitrogen load should have created both the high
ammonia concentration and NBOD in the DWC and masked the influence of the
comparatively small ammonia load from the RWCF. However, both correlation
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analyses and mass balance calculations computed for daily intervals suggested
the RWCF was a major contributor to the dissolved ammonia in the DWC.

CBOD accounted for 30% of the variation in BOD and was the second water
quality variable most closely associated with the variation of BOD in stepwise
multiple regression analysis. This finding conflicts with current (Jones and
Stokes Associates 1998) and historical (Bain and Pierce 1968) hypotheses that
suggest the decomposition of algal biomass from upstream was the primary
cause of BOD in the DWC. This hypothesis was not surprising because
historically algal biomass upstream at Vernalis often reached 200 ug/L and
coincided with algal biomass in the DWC of up to 100 ug/L in the summer.
However, a factor of 4 decrease in algal biomass since the 1970s coupled with
only a 20% decrease in the frequency of dissolved oxygen concentration below 5
mg/L in the 1990s suggested the importance of algal biomass may have changed
(Lehman et al. 2001).

Respiration of organic matter from upstream was the primary cause of CBOD in
the DWC. This differed from estuaries in the Chesapeake Bay and the Guif of
Mexico where the oxidation of algal biomass from in situ algal growth was
sufficient to cause heterotrophy (Kemp et al. 1997; Rabalais and Turner 2001).
The difference was partly a function of the low algal biomass and growth rate in
DWC. In the Susquehanna River estuary, chlorophyll a concentration ranged
from 1000 to 2000 mg/m? and was associated with primary productivity from 15
to 427 mg C/m? /hr (Malone 1992). This was at least two times higher than the
chlorophyll a concentration of 33 to 698 mg/m? and algal growth rate of 65 to146
mg C/m?/hr in the DWC. Algal growth rate in the DWC is limited by high
concentrations of inorganic suspended solids that create light limiting conditions
for phytoplankton growth year-round (Jassby et al. 2002).

Most of the carbonaceous oxygen demand in the DWC came from algal growth
upstream. The daily flux of live algal biomass measured as chlorophyll a from
upstream ranged from 20 to 180 kg/d. This load was larger than the chlorophyll
a load from daily algal growth in the photic zone of 16 to 59 kg/d. In addition, the
live algal load from upstream was accompanied by a larger load of oxidized algal
biomass. The oxidized algal load included detrital algal biomass measured as
phaeophytin and an even larger load of highly decomposed organic material that
could not be identified as algal biomass by pigment concentration. Yet, both
carbon to nitrogen molar ratios and stable isotope analysis indicated the
suspended material was of algal origin (Kratzer et al. 2003) and regression
analysis suggested it was the primary source of BOD at upstream stations (Foe
et al. 2002; Stringfellow and Quinn 2002; Dahlgren 2001). Most of this upstream
phytoplankton material was retained within the DWC because a high settling rate
at the junction of the San Joaquin River and the DWC caused the upstream load
to settle immediately upon entry into the DWC (Litton 2003). Full oxidation of this
phytoplankton biomass load was supported by high retention time in the DWC.
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CONTROLLING FACTORS

Light availability for algal growth was an important controlling factor for algal
production in the DWC. Algal production rate was light limited in the DWC where
surface irradiance penetrated to only 2 m depth and only about 20% of the
surface irradiance was available for algal growth (Lehman et al. 2001). Light-
limitation is a well-known limiting factor for algal productivity in SFB (Cloern
1987) and for long-term chlorophyll a production in the San Joaquin River
(Lehman 1992) and is caused by large quantities of inorganic suspended
particles in the water column. This suspended material is imported from
upstream and settles to the bottom of the DWC where resuspension keeps
turbidity high (Litton 2002).

Net transport between upstream stations was uncertain and added substantial
uncertainly to estimates of the upstream load into the DWC. Current estimates of
upstream load into the DWC (Foe et al. 2002) rely on the assumption that
material from the San Joaquin River watershed upstream of the DWC reached
the DWC intact and concentrations of suspended material increased with
distance downstream as each new source was added. The assumption was
supported short transport times measured between Merced and the DWC
(Kratzer et al. 2003). However, concentrations and loads of suspended material
usually decreased between MD and CP in 2001 or previous years (Lehman and
Ralston 2000; Lehman et al. 2001). Further, a decrease in carbon to nitrogen
molar ratio, decrease in chlorophyll a concentration, increase in phaeophytin
concentration and change in carbon distribution among algal species groups
suggested the characteristics of the upstream load changed with distance
downstream in 2001. A decrease in the oxygen demand potential of riverine
organic material with distance downstream was also measured for Chesapeake
Bay (Kemp et al. 1997).

Residence time was an important factor influencing the expression of oxygen
demand in the DWC. Sediment and oxygen demanding substances from
upstream entered the DWC on ebb tide. This material was often retained in the
DWC because of rapid settling or long residence time. The amount of organic
matter that settled to the bottom increased with the amount of TSS (Litton 2002)
and facilitated concentration of oxygen demanding substances near the bottom.
Here resuspension of bottom sediments by tidal action facilitated the full
expression of the oxygen demand in the sediment. Low sediment oxygen
demand was confirmed in sediment core studies (Litton 2002).

VI. Recommendations

1. Further information is needed on the relative contribution of nitrifying
bacteria and algae on oxygen demand in the DWC and upstream in
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response to environmental conditions on a daily basis. This information
will assist development of an accurate conceptual model and critical
analysis of the impact of management alternatives on oxygen dynamics
associated with both algal growth in the DWC and upstream. This
information will also assist evaluation of predictive management models.

. Further effort is needed in analysis of existing data. Substantial quantities
of data were collected between 1999 and 2001 by a many researchers but
relatively little of this information has been fully analyzed or integrated
because of the aggressive project schedule. Additional resources are also
needed to evaluate the data findings over the past three years with long-
term data sets. Existing data should also be used to critically evaluate the
accuracy and reliability of the existing models.

. Quantification is needed on the contribution of oxygen demanding
substances from the San Joaquin River upstream of the DWC to oxygen
demand in the DWC. This verification will require quantification of the load
of oxygen demanding materials from upstream into the DWC as well as
the net transport of oxygen demanding materials between locations
upstream. One potential approach would be to utilize a Lagrangian
sampling regime whereby the net change in materials in the water column
such as algal biomass and species composition are measured as they
move downstream with streamflow.

. Information is needed on the environmental factors that influence the net
transport of oxygen demanding substances from downstream. These
environmental factors include water temperature, removal by grazing,
oxidation by light, suspended sediment concentration, agricultural
diversion, reservoir release, export flow and channel barrier operation.

. Diel, seasonal and interannual variability of oxygen demand was high. A
long-term monitoring is needed to quantify this variability and determine
how environmental conditions and oxygen demanding loads interact to
create oxygen demand.

. Monitoring has revealed spatially and temporally variable dissolved
oxygen concentration and high ammonia concentration in the DWC. Both
of these may adversely impact fisheries resources. More directed studies
are needed to assess the acute and chronic impact of these conditions on
fisheries resources.

. BOD tests were a useful tool for assessment of the potential oxygen
demand but these laboratory tests are conducted below ambient water
temperature. Information is needed on the oxidation rates of the various
organic materials and ammonia under varying environmental conditions
including water temperature and light.
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VIIl. Appendix
Appendix A
Methods used for water quality analyses
DWR San Joaquin Dissolved
Oxygen Study Methods
Label: Method Size [Preser |Handl|Container Reporting |Note
vative |ing |Note: Limit
Dissolved Organic| EPA 415.1 (D), Organic 40 ml |H2PO4|Ice, 4°|Do Not Overfill. 0.10
Carbon Carbon (Dissolved) Vial |, pH <2|C Vial Contains
Acid.
Total Organic EPA 415.1 (T), Organic 40 ml [H2PO4|ice, 4°|Do Not Overfill. 0.10
Carbon Carbon (Total) Vial |, pH <2|C Vial Contains
Acid.
Chiorophyil a and | Std Method 10200 H, Froze |Freeze 0.05
Phaeophytin Spectrometric Determination n, Dry {Immediately
of Chlorophyll & Ice
Phaeophytin
Chloride EPA 325.2, Chioride 1 Pint Ice, 4° 1.00
C
Nitrate + Nitrite Std Method 4500-NO3-F  [1/2 Ice, 4°|Freeze if held 0.01
Modified, Nitrite, Nitrate Pint C more than 24
(DWR Modified) (Dissolved) Hrs.
Total Kjeldahl EPA 351.2, Kjeldah! 12 Ice, 4°|Freeze if held 0.10
Nitrogen Nitrogen Pint C more than 24
Hrs.
Total Suspended | EPA 160.2, Total 1 Ice, 4°|Freeze if held 1.00
Solids Suspended Solids Quart C more than 24
Hrs.
Volatile EPA 160.4, Volatile 1 Ice, 4° 1.00
Suspended Solids |Suspended Solids Quart C
Total Phosphorus | EPA 365.4, Phosphorus 1/2 Ice, 4° 0.01
(Total) Pint C
Ammonia EPA 350.1, Ammonia, 1/2 Ice, 4°|Freeze if held 0.01
Nitrogen (Dissolved) Pint C more than 24
Hrs.
Orthophosphate | EPA 365.1 (DWR Modified),|1/2 Ice, 4°|Freeze if held 0.01
DWR Othro-Phosphate Pint C more than 24
(Dissolved) Hrs.
Biochemical Std Method 5210B 12 Ice, 4° 1.00
Oxygen Demand gal Cc
Carbonaceous Std Method 5210B 1/2 Ice, 4° 1.00 |Hach Powder
Biochemical gal C # 253;
Oxygen Demand 0.169/300ml
{(inhibitor)
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Appendix B. Calibration curves for chlorophyll a measured by YSI 6600
fluorometers and DWR continuous monitors.

Channel Point all data
40 y = 2.2236x + 1.5336
T 2 _
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9 30
z .
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Appendix C: Tables and Figures



Sewage treatment plant|

OPatterson

Q2 8l(ilometers

L:l-is-é-——qwiles

il




Lehman 4-19-02 Oxygen demand Figures and Tables

Fig. lI-2a. Daily average, minimum and maximum water quality measurements

collected using a YSI monitor at Turner Cut.
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Fig. 11-2b. Daily average, minimum and maximum water quality measurements
collected using a Schneider water quality monitor at 1 m depth for Rough and

Ready Island.
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Fig. Il-2c. Daily average, minimum and maximum water quality measurements
collected using a YSI monitor at 1 m from the bottom for Rough and Ready

Island.
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Fig. l1-2d. Daily average, minimum and maximum water quality measurements
collected using a YSI monitor at 1 m depth in the Turning Basin.
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Fig. Il-2e. Daily average, minimum and maximum water quality measurements
collected using a YSI monitor at 1 m above the bottom in the Turning Basin.
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Fig. II-2f. Daily average, minimum and maximum water quality measurements
collected using a YSI monitor at Channel Point.
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Fig. Il-2g. Daily average, minimum and maximum water quality measurements
collected using a Schneider water quality monitor at Mossdale.
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Fig. ll-3c. Vertical Profiles of water quality variable near Navigation Light 48.
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Fig. II-3d. Vertical Profiles of water quality variable near Turning Basin.
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Lehman 4-19-02 Oxygen demand Figures and Tables

Fig. lll-1. Monthly average chlorophyll a concentration measured at Rough and
Ready Island between 1970 and 2000.
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Fig. Ill-2. Chlorophyll a load at Vernalis between 1970 and 2000.
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Fig. 1I-3. Mean and standard deviation of net plankton production rate in the
photic zone for stations in the San Joaquin River. Turner Cut (TC), Rough
and Ready (RR), Light 48 (L48), Turning Basin (TB), Channel Point (CP),
Mossdale (MD), Vernalis (V), Crows Landing (CL).
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Fig. lll-4. Mean and standard deviation of plankton respiration rate measured at
stations in the San Joaquin River. Stations as in Fig. IlI-3.
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Fig. lI-5. Mean and standard deviation of net plankton production rate
normalized to chlorophyil a concentration at stations in the San Joaquin
River. Stations as in Fig. Ill-3.
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Fig. 111-6 a. Comparison of total and dissolved BOD5 and BOD10 and total and
dissolved carbonaceous BOD5 and BOD10 at Turner Cut
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Fig. I1-6 b. Comparison of total and dissolved BOD5 and BOD10 and total and
dissolved carbonaceous BOD5 and BOD10 at Rough and Ready Island.
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Fig. Il-6 c. Comparison of total and dissolved BOD5 and BOD10 and total and
dissolved carbonaceous BOD5 and BOD10 at Navigation Light 48.
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Fig. 111-6 d. Comparison of total and dissolved BOD5 and BOD10 and total and
dissolved carbonaceous BOD5 and BOD10 at Turning Basin.
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Fig. ll-6 e. Comparison of total and dissolved BOD5 and BOD10 and total and
dissolved carbonaceous BOD5 and BOD10 at Channel Point
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Fig. 111-6 f. Comparison of total and dissolved BOD5 and BOD10 and total and
dissolved carbonaceous BOD5 and BOD10 at Mossdale.
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Fig. 111-6 g. Comparison of total and dissolved BOD5 and BOD10 and total and
dissolved carbonaceous BOD5 and BOD10 at Vernalis.
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Fig. 11I-6 h. Comparison of total and dissolved BOD5 and BOD10 and total and
dissolved carbonaceous BOD5S and BOD10 at Crows Landing.
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Fig. 111-7. Comparison of ammonia load from the RWCF and ammonia
concentration at Channel Point and Rough and Ready Island in 2001.
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Fig. 111-8. Comparison of ammonia load from the Regional Water Treatment
Control Facility and NBOD at Rough and Ready Island.
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Fig. I11-9. Comparison of the potential oxygen demand from nitrification of
ammonia and organic nitrogen concentration in the Deep Water Channel.
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Fig. II-10. Comparison of ammonia concentration (a) and nitrogenous BOD (b) in
the Deep Water Channel at Rough and Ready Island with organic nitrogen load
from upstream at Channel Point.
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Fig. lll-11 a. Concentration of water quality variables measured at stations in the
San Joaquin River on June 26, 2001. Turner Cut (TC), Rough and Ready
Island (RR), Light 48 (L48), Turning Basin (TB) and Channel Point (CP).
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Fig. 1I-11 b. Concentration of water quality variables measured at stations in the
San Joaquin River on July 18, 2001.
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Fig. IlI-11 ¢. Concentration of water quality variables measured at stations in the
San Joaquin River on August 18, 2001.

BOD 10 August 18,2001 BOD 5 August 16, 2001 BOD 5 Dissolved August 16, 2001
10 6 0.6
8 4 o 04
g5 6 B B
E 4 £ 2 E 02
2
0 0 0
T RR T® CP M V cL JC RR B CP MD V CL TC RR T8 CP MD V CL
Station Station Station
BOD 10 Dissolved August 16, 2001 CBOD 10 August 16, 2001 CBOD 10 Dissolved August 16, 2001
1.5 6 0.8
4 o4 2 06
o -] D 04
E 05 E2 € o2
0 0 0
T RR ™ CP MD V CL TC RR ™8 CP MD VvV CL TC RR TB CP MD V CL
Station Station Station
CBOD5 August 18, 2001 CBOD 5 Dissolved August 16, 2001 Chioride August 16, 2001
5 05 200
4 0.4 150
g 3 g 03 o
g 2 2 02 g 100
1 0.1 50
0 0 0
T R 1B [~ . o] v a T RR T CP M V CcL T RR ™ & W V a
Station Station Station
Chiorophyl August 16, 2001 Dissolved Ammonia August 16, 2001 DOC August 16, 2001
60 0.8 5
50 4
P 0.6 .
B % § 04
20 2
02
10 1
0 0 0
T RR B C MW V O TT RR T C M V T RR TB C MW V «
Station Station Station
Total Kjedahl N August 16, 2001 Nitrite + Nitrate August 16, 2001 Ortho-Phosphate August 16, 2001
2 5 03
15 4
o o 02
EN EF E
05 ‘ 0.1
0 0 0
TC RR TB CP MD V CL TC RR TB CP MD V CL TC RR 7B CP MD V CL
Station Station Station




Lehman 4-19-02 Oxygen demand Figures and Tables

22

10

Phaeophytin August 16, 2001

Total phosphorus August 16, 2001

T RR B C MW V
Station

TOC August 16, 2001

mg/L
DANOREO®

T R T CC MW

A

100
80

20

TSS August 16, 2001

VSS August 16, 2001

T RR B C M V
Station




Léhman 4-19-02 Oxygen demand Figures and Tables

Fig. ll-11 d. Concentration of water quality variables measured at stations in the
San Joaquin River on September 14, 2001.
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Fig. I1-11 e. Concentration of water quality variables measured at stations in the
San Joaquin River on October 3, 2001.
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Fig. 11-12. Total organic carbon to total organic nitrogen molar ratios by
station and date.
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Fig. 1ll-13. Percent contribution of algal biomass to total carbon and

organic nitrogen measured in the Deep Water Channel.
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Fig. IV-1. Oxidation of chlorophyll a concentration and the associated increase in
ammonia concentration measured at 5-day intervals for 30 days. Measurements
were made at 20°C.
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Fig. IV-2. Percentage of the organic nitrogen load from upstream at Mossdale
comprised of chlorophyll a concentration in 2001.
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Fig. IV-3. Average percent surface irradiance and depth of the photic zone at
sampling stations in the San Joaquin River.
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Fig. IV-4. Net plankton production rate measured at different daily average light

intensity by station on September 5, 2001.
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Fig. IV-5. Median plus 25 and 75 percent quartiles of dissolved inorganic
nitrogen and orthophosphate concentration at each sampling station in the San
Joaquin River.
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Fig. IV-6. Water quality variables measured on ebb and flood tide near mid-depth
at Channel Point. ‘
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Fig. IV-7 a. Water quality variables measured on ebb and flood tide at 1 m depth
for Rough and Ready Island.
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Fig. IV-7 b. Water quality variables measured on ebb and flood tide at 1 m from

the bottom for Rough and Ready Island.
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Fig. IV-8. Tidal day load measured at Channel Point near mid-depth by date.
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Fig. IV-9. Net tidal day flow at Rough and Ready Island.
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Fig. IV-10 a. Tidal day load of water quality variables at 1 m depth for Rough and
Ready Island.
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Fig. IV-10 b. Tidal day load of water quality variables at 1 m from the bottom for
Rough and Ready Island.
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Fig. IV-11. Comparison of chlorophyll a concentration measured at Mossdale and
Channel Point in 2001.

80 1
70 -
60 -
50 A
40 A
30 -
20 -
10 A

W Mossdale
fChannel Point

chlorophyll ug/L.

18-Jui 1-Aug 29-Aug 14-Sep 3-Oct

Date




Lehman 4-19-02 Oxygen demand Figures and Tables

Fig. IV-12 a. Algal species carbon among stations on July 18 for Turner Cut (TC),
Rough and Ready Is. (TC), Light 48 (L48), Turning Basin (TB), Channel Point
(CP), Mossdale (MD), Vernalis (V) and Crows Landing (CL).
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Fig. IV-12 b. Algal species carbon among stations on August 16. Stations are
listed in IV-12 a.
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Fig. IV-12 c. Algal species carbon among stations on August 29. Stations are
listed in IV-12 a. '
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Fig. IV-12 d. Algal species carbon among stations on September 14. Stations
are listed in IV-12 a.
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Table IlI-1. Average plankton production rate measured for the Deep Water

Channel between Turner Cut and Navigation Light 48.

Date

26-Jun
18-Jul
16-Aug
29-Aug
14-Sep
03-Oct

mean

net production

kg O2/ day

7158
10149
13928
15041
11274
6083

10605

gross productioin rate in aphotic
rate in photic zone rate in photic zone

kg 02/ day

94156
12812
17536
18736
16156
8198

13809

respiration

zZone

kg 02/ day

-11309
-14681
-13699
-17329
-20142
-10725

-14648

net production total oxygen

rate of water

column kg/day study reach

kg O2/ day

-4151
-4532
229
-2287
-8869
-4643

-4042

demand in

mg O2/L

-0.27
-0.29
0.01

-0.15
-0.57
-0.30

-0.26

increase chl a in
photic zone

kg / day

56
79
109
117
88
47

83
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Table IlI-2. Estimated production and respiration rate of algae and bacteria in
photic and aphotic zones between Turner Cut and Navigation Light 48 in the
Deep Water Channel in 2001.

algal
average algal net algal net algal
percent production gross respiration producti oxygen chla bacterial  bacterial
respiratio ratein  productioin rate in  onrate production produced respiration respiration bacterial
n by photic rate in aphotic inwater instudy inphotic inphotic inaphotic oxygen
Date algae zone  photic zone zone column reach zone zone zone demand

percent kg O2/day kg O2/day kg O2/day gO2/da mg/L kg/day kg O2/day kg O2/day mg/L

26-Jun 39 8545 9415 4166 4379 0.28 67 1468 7143 -0.55

18-Jul 49 11564 12812 7021 4542 0.29 90 1415 7659 -0.58
16-Aug 42 16078 17536 5680 10398 0.67 125 2151 8019 -0.65
29-Aug 41 17124 18736 . 7318 9805 0.63 134 2082 10011 -0.78
14-Sep 59 13001 16156 13499 -498 -0.03 101 1727 6643 -0.54
03-Oct 45 7200 8198 5020 2180 0.14 56 1117 5706 -0.44

mean 46 12252 13809 7117 5134 0.33 96 1660 7530 -0.59
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Table 11I-3. Pearson correlation coefficients calculated among variables
measured in the Deep Water Channel at Turner Cut, Rough and Ready Island
and Navigation Light 48. n=103.

BOD10

CBOD10

NBOD10
Ammonia

TKN

non-ammonia TKN
Total pigment
chloride

Chlorophyll

Dissolved organic
carabon

Nitrate
Orthophosphate

Phaeophytin
Total phosphorus

Total organic carbon
Total suspended
solids

Volatile suspended
solids

BOD10

0.62

0.86

0.78

0.75

0.41

0.66

0.44

0.59

0.46

0.23
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-0.12

0.43

CBOD10
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0.20
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0.81

0.10
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0.29

0.13

-0.07

0.36

0.08

0.12

-0.26

0.33

NBOD10

0.93
0.82
0.34
0.30
0.49

0.21

40.40
0.20
0.40

0.32

0.58

0.23

0.01

0.32

Ammonia

0.87

0.34

0.22

0.40

0.10

0.23

0.10

0.39
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0.60

0.20

0.26

0.29

TKN

0.76
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0.41

0.20
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0.30
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0.64

0.24

0.24

0.31

non-ammonia TKN

0.28
0.25

0.24

0.20
0.28
0.05

0.21

0.44

0.19

0.11

0.20

Total pigment

0.03

0.91
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0.00

-0.03

0.61

0.08

0.18

0.07

0.42

Chloride

0.05
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Table IlI-4. Comparison of stepwise multiple regressions developed to describe
the variation in BOD for 2000 and 2001.

independent variables: Ammonia and CBOD

Parameter Adj. R-
Year n Variable estimate tvalue probability F value square
2001 85 intercept 1.0 6.5 <01 446 0.91
ammonia 5.0 226 <.01
CBOD 1.1 17.8 <.01
2000 100 intercept 1.4 45 <. 137 0.73
ammonia 39 15.6 <.01
CBOD 1.0 7.8 <.01
2000 & 2001 186 intercept 0.8 5.8 <.01 458 0.83
ammonia 44 240 <.01
CBOD 1.2 19.0 <.01

Independent variables: Ammonia and total pigment

Parameter Adj. R-
Year n Variable estimate tvalue probability F value square
2001 85 intercept 1.3 6.7 <.01 254 0.86
ammonia 4.5 15.7 <.01
total pigment 0.1 12.6 <.01
2000 100 intercept 2.2 10.6 <.01 76 0.60
ammonia 0.0 3.0 <.01
total pigment 4.0 12.3 <.01
2000 & 2001 186 intercept 20 10.7 <.01 133 0.59
ammonia 0.0 6.2 <.01

total pigment 4.7 16.0 <.01
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Table IV-1. Comparison of the dissolved ammonia load contributed by Mossdale
(MD) and the Stockton Wastewater Treatment Control Facility (RWCF at
residence times from 1 to 25 days. Percentages were based on mass balance
model runs. Model run 1 included only a seasonal adjustment for water
temperature on oxidation rate of organic nitrogen. Model 2 included the water
temperature adjustment plus an adjustment for the percentage chlorophyll a
concentration in the organic nitrogen load.

residence MD 10th 90th WTCF 10th 90th Significant sample
Model time median percentile percentile median percentile percentile difference size
day percent percent level n
Run 1
38 16 52 62 0 72 <0.01 102
5 49 40 56 51 18 56 ns 20
10 55 42 57 45 29 49 <0.02 10
15 61 45 61 39 35 46 <0.04 ‘
20 58 50 62 42 33 46 <0.04 5
25 58 56 59 42 38 43 ns 4
Run 2
1 34 6 47 66 0 83 <0.01 102
5 38 15 47 62 35 70 <0.01 20
10 43 26 45 57 46 69 <0.01 10
15 42 31 46 58 46 64 <0.02 7
20 38 35 45 62 48 63 <0.05 5

25 41 34 44 59 49 61 ns 4
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Table IV-2. Net tidal day transport between Channel Point and Rough and
Ready Island measured in 2001.

chlorophyll a organic nitrogen ammonia total BOD
Net Percent Net Percent Net Percent Net Percent
transport retention  transport retention transport retention transport retention
kgd-1 % kg d -1 % kg d -1 % kgd-1 %
Week
03-Jun 49 91 903 50 -61 -17 7489 61
10-Jun . 25 89 988 64 72 20 6287 69
01-Jul 8 19 -389 -37 8 1 -206 -1
12-Aug 8 27 -181 -11 418 32 -1166 -11
19-Aug 28 85 1054 77 787 69 8025 73
09-Sep 13 51 791 37 333 44 4166 37
16-Sep 41 77 1226 49 782 50 4638 34
07-Oct 32 47 1112 47 3056 84 10186 52
median 27 64 946 48 375 38 5462 44
10th
percentile 8 19 -389 -37 -61 -17 -1166 -11
90th

percentile 34 86 1068 54 783 55 7623 63



Dr.P.W.Lehman April 2, 2003
Division of Environmental Services
Department of Water Resources

Response to 2002 peer review comments
Appendix A.

No response needed.

Appendix B.

Mass balance calculations can be useful, but have to be applied carefully to
this problem because of the importance of oxidation rate to the daily oxygen
demand contributed from upstream load. Most of the upstream organic matter is
highly decomposed phytoplankton (Kratzer et al. 2003) and only about 40% of
the organic nitrogen in the upstream load is live phytoplankton that oxidizes to
dissolved ammonia at the measured rate of 0.15 mg N / mg chlorophyll a / day
(20° C). Because of the relatively low rate of oxidation and small percentage of
chlorophyll a in the upstream load, the dissolved ammonia load from the RWCF
was higher on a daily basis than the dissolved ammonia load produced by
oxidation of nitrogenous organic matter from upstream. The relative contribution
of both sources to the dissolved ammonia concentration in the DWC varied with
residence time, but was strongly influenced by the percentage of chlorophyll a in
the upstream load. A mass balance model that takes the oxidation rate of the
organic matter into consideration was included in the revised report.

| agree with the reviewer that reduction of the dissolved ammonia load from
the treatment plant alone would not eliminate the low dissolved oxygen in the
DWSC because of the oxygen demand from upstream sources. High chiorophyil
a concentration at Mossdale in June and October and are probably the primary
cause of low dissolved oxygen concentration in the DWSC about 20 days later.
In addition, 30% of the variation in total BOD was associated with carbonaceous
demand throughout the season. Management alternatives that do not address
the decomposition of high phytoplankton biomass in the DWSC will not be
adequate.

Appendix C. - David Beasley

No comment necessary.



Appendix D. - Alex Horne

No comment necessary

Appendix E. — Alan Jassby

item 1.
Chlorophyll a load from in situ growth was estimated based on net oxygen
production from light and dark bottle incubations in the photic zone. In this
technique, net growth rate is estimated from a change in oxygen
concentration and is a direct estimate of new carbon production in the photic
zone.

It is true that the net carbon produced in the total DWSC water column
(photic plus aphotic zone) is far less than that produced in the photic zone
alone because of respiration processes in the aphotic zone. However, the
purpose of this calculation was to determine the relative amount of new
organic matter than would be respired in the aphotic zone. This quantity was
the best value for comparison with the upstream load because both sources
of chlorophyll a caused respiration in the aphotic zone of the DWSC.
Additions were made to the text for clarity.

Item 2.
There was no intention to indicate the upstream load was unimportant and
changes were made in the text in order to clarify that point. However, the
correlation analysis cannot be discounted and is very important. The
upstream load of organic nitrogen and TBOD or NBOD in the DWSC were
poorly correlated and contrasted sharply with the strong correlation between
the RWCF dissolved ammonia load and both TBOD and NBOD in the DWSC.
| agree with the reviewer that this correlation is probably not spurious
because of the variable nature of the RWCF load.

It is true, there was often a large load of dissolved ammonia from upstream
based on Mossdale water quality data. Dissolved ammonia concentration
reached as high as 0.42 mg/L at Mossdale in 2001 in our data set. How
much of this reached the DWSC is unclear. It is hard to imagine that
oxidation processes were not operating in the 12-mile journey to the DWSC
between Mossdale and Channel Point.



A simple mass balance model was developed to assess the relative
contribution of upstream and RWCF dissolved ammonia load from both direct
addition of dissolved ammonia and indirect addition of dissolved ammonia
through the oxidation of organic nitrogen. The load calculations assumed
there was no loss for each source during transport into the DWSC. The range
of potential contributions was developed based on the measured
ammonification rate of chlorophyll a concentration of 0.19 mg N/ mg
chlorophyll a /d at 25 °C. If all of the organic nitrogen oxidized at the
maximum rate then it took 10 days for the accumulated load of dissolved
ammonia plus dissolved ammonia from the oxidation of organic nitrogen from
upstream at MD to exceed that from the RWCF dissolved ammonia
discharge. In contrast, if only the most reactive organic material, chlorophyli
a, was oxidized at the measured rate then the RWCF consistently contributed
the majority of the ammonia in the DWSC at all residence times from 1 to 25
days. Clearly the RWCF is a major contributor to oxygen demand in the
DWSC but as expected the magnitude of its impact varies with a suite of
conditions.

| agree that the importance of the RWCF ammonia load does not eliminate
the importance of oxygen demand from phytoplankton biooms. The
carbonaceous BOD comprised up to 50% of the total BOD and accounted for
30% of the variation in the daily total BOD for both years. This was a
significant percentage of the total BOD. In fact, this percentage might have
been higher if the impact of the June phytoplankton bloom on low dissolved
oxygen concentration in July was included.

A check of the Mossdale NBOD in 2001 indicated NBOD comprised an
average of 42%. Most of the total BOD was not NBOD as indicated by the
reviewer. This was the result of an inappropriate graphical format. All graphs
were revised.

A plot of non-ammonia TKN against NBOD was added for clarity.
Fig. 111-10 was revised.

Yes, there was very little correspondence between NBOD and non-ammonia
TKN. A graph was added to demonstrate this fact. See above.

Item 3.
There was no evaluation of the algal production rate or environmental
variables on the BOD in the correlation analysis. The correlation analysis only
explored the potential impact of the concentration of oxygen demanding
substances on the variation in oxygen demand. As it turned out, these
variables accounted for most of the variance so the analyses didn’t go further.



Environmental variables such as water temperature and mechanistic
processes are logically important, but were not needed to explain most of the
variance. This may be due to the relatively stable water temperature, surface
irradiance and turbidity during the study period and the near zero net oxygen
production of the phytoplankton. This is a good point and was included in

the revised report.

Item 4.
Upstream load is an important contributing factor to oxygen demand in the

DWSC. The relative contribution of the upstream load and the RWCF was
addressed by development of the mass balance model for ammonia
concentration. Both were important and their relative importance was
strongly influenced by the oxidation rate of the upstream load. See item 2.

Appendix F.

No responses needed.



