San Joaquin River Salinity Management Model (SANMAN)

Presentation Content

- Model Description
- Salinity Management Actions
- SJRWQMG Study Scenarios

SJR Salinity Management Model (SANMAN)

Model Description

The purpose of the San Joaquin River Salinity Management Model (SANMAN) is to provide reconnaissance-level decision support in the development of a <u>San Joaquin River Salinity</u> <u>Management Plan</u> by:

Identifying coordinated management strategies that meet the Vernalis salinity objective

Estimating water costs of strategies

SJR Salinity Management Model (SANMAN)

Model Description (cont'd)

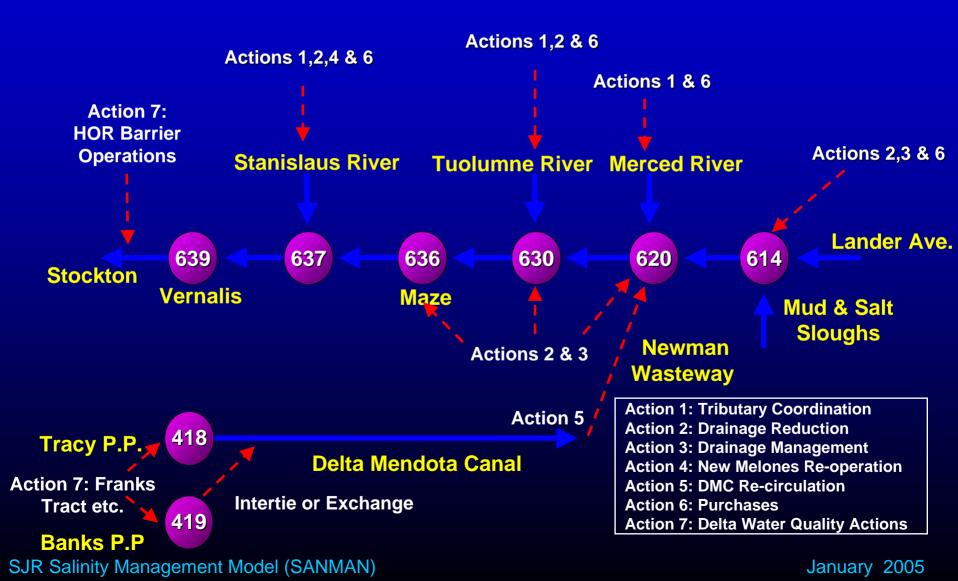
Microsoft EXCEL

- Post-analysis of CALSIM Sequential Hydrology and CVP-SWP Operations
 - March 1922 thru September 1994
 - April May: Half month time step

Prescribes Action Levels (e.g. re-circulation volume) Necessary to Meet Vernalis Salinity Objective Given Pre-defined Action Priorities

SJR Salinity Management Model (SANMAN)

Salinity Management Actions


- Coordinated Tributary Operations
- Drainage Reduction
- Drainage Management
- New Melones Releases
- DMC Re-circulation & Delta Actions

Purchases

Decreasing Action Priority

SJR Salinity Management Model (SANMAN)

SANMAN Version 2.0 Schematic

Salinity Management Action: Coordinated Tributary Operations (Priority 1)

Actions Applied to East Side Tributaries

Action Levels Defined by Time Series Input

SJR Salinity Management Model (SANMAN)

Salinity Management Action: Drainage Reduction (Priority 1)

- Actions Applied to 9 Regions:
 - East Side (3 regions)
 - Upper DMC (3 regions)
 - Mud & Salt Sloughs (3 regions)
- Action Levels Defined by Time Series Input

SJR Salinity Management Model (SANMAN)

Salinity Management Action: Drainage Management (Priority 2)

- Actions Applied to 6 Regions:
 - Upper DMC (3 regions)
 - Mud & Salt Sloughs (3 regions)
- Model-Prescribed Action Level
- User Specifications
 - Storage diversion period
 - Maximum storage volume
 - Maximum residence time

SJR Salinity Management Model (SANMAN)

Salinity Management Action: New Melones Releases (Priority 3)

- Model-Prescribed Action Level
 - Baseline Water Quality Operation Removed
- User Specifications
 - Period of operation
 - Maximum annual release
 - Water quality

SJR Salinity Management Model (SANMAN)

Salinity Management Action: DMC Re-circulation (Priority 4)

- Model-Prescribed Action Level
- Accomplished With Available Delta Pumping Capacity
 - Tracy first, Banks second
 - Available summer capacity "lumped"
 - Available capacity limited by E/I ratio, B2-EWA restrictions and higher pumping priorities

SJR Salinity Management Model (SANMAN)

Salinity Management Action: DMC Re-circulation (cont'd)

Tracy Pumping Priorities

- CVP contract deliveries
- Export of additional CVP stored water
- CVP water transfers
- SWP exports through JPOD
- DMC re-circulation

SJR Salinity Management Model (SANMAN)

Salinity Management Action: DMC Re-circulation (cont'd)

Banks Pumping Priorities

- SWP contract deliveries (including 500 cfs Jul-Sep EWA reservation)
- SWP water transfers
- Additional EWA reservation
- CVP exports through JPOD
- DMC re-circulation

SJR Salinity Management Model (SANMAN)

Salinity Management Action: DMC Re-circulation (cont'd)

User Specifications

- Period of operation
- Conveyance losses by month and water year type
- Water quality changes by month and water year type resulting from Delta actions (e.g. Frank's Tract)

Options

- Upgrade priority
- Increase availability by "paying" E/I cost
- Address Stockton dissolved oxygen targets

SJR Salinity Management Model (SANMAN)

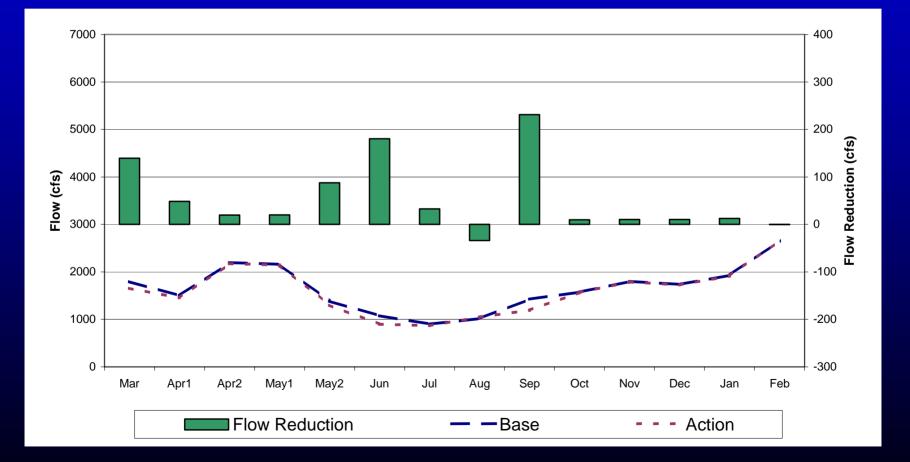
Salinity Management Action: Purchases (Priority 5)

- Actions Applied to East Side Tributaries and Region Upstream of Merced River
- User Specifications
 - Period of operation
 - Maximum annual purchase
 - Water quality

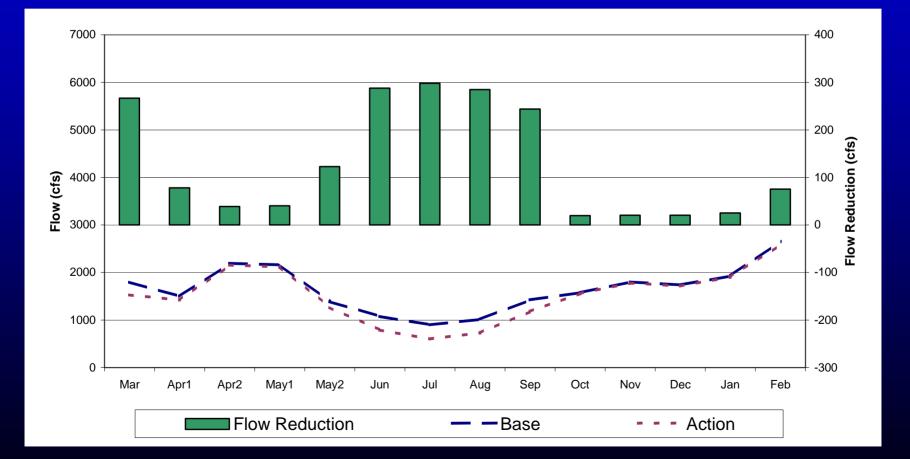
SJR Salinity Management Model (SANMAN)

SJRWQMG Study Scenarios

Scenario	Description
	ISOLATED ACTION STUDIES
IA1	No Action
IA2	SJR Improvement Project
IA3a	20% Drain Reduction: Exchanger Region
IA3b	50% Drain Reduction: Exchanger Region
IA3c	20% Drain Reduction: Upper DMC Regions
IA3d	50% Drain Reduction: Upper DMC Regions
IA4	SJRWQMG Refuge Return Flow Management
IA5a	Refuge Return Flow Storage Retention: 5 TAF
IA5b	Refuge Return Flow Storage Retention: 10 TAF
IA6	Mid-Priority DMC Re-circulation: Jul-Sep
IA7	High-Priority DMC Re-circulation: Jul-Sep
IA8	SJRWQMG Water Transfers: Reservoir Rule Curve
IA9	SJRWQMG Water Transfers: Every Year Water
	COMPOSITE ACTION STUDIES
CA1	IA2 + Targeted Re-circulation & New Melones
CA2	Refuge Retention + High-Priority Recirc: Jul-Sep
	SENSITIVITY STUDIES
S 1	High-Priority DMC Re-circulation: Year Round
S2	High-Priority Recirc: Year Round w/ Flow Targets
S 3	High-Priority Recirc: Jul-Sep w/o DO Releases
	DRAFT PREFERRED ALTERNATIVE:
	 Phased implementation of SJRIP (10-100%)
	 Strategic water transfers
	 DMC re-circulation
MP-10 thru MP-	Mid priority re-circulation with modified Stanislaus
100	DO compliance
HP-10 thru HP-	High priority re-circulation with modified Stanislaus
100	DO compliance
MP-10DO thru	Mid priority re-circulation with existing Stanislaus
MP-100DO	DO compliance
HP-10DO thru	High priority re-circulation with existing Stanislaus
HP-100DO	DO compliance


SJR Salinity Management Model (SANMAN)

Vernalis Flow: SJRWQMG Draft Preferred Alternative HP-20 Critical Year Average


SJR Salinity Management Model (SANMAN)

Vernalis Flow: SJRWQMG Draft Preferred Alternative HP-50 Critical Year Average

SJR Salinity Management Model (SANMAN)

Vernalis Flow: SJRWQMG Draft Preferred Alternative HP-100 Critical Year Average

SJR Salinity Management Model (SANMAN)

Acknowledgements

Dan Steiner, Consultant Armin Munevar, CH2M-Hill Toshio Kyosai, CH2M-Hill SJRWQMG (Byron Buck, Chair) Water Users Technical Group (Dennis Majors, Chair)

SJR Salinity Management Model (SANMAN)