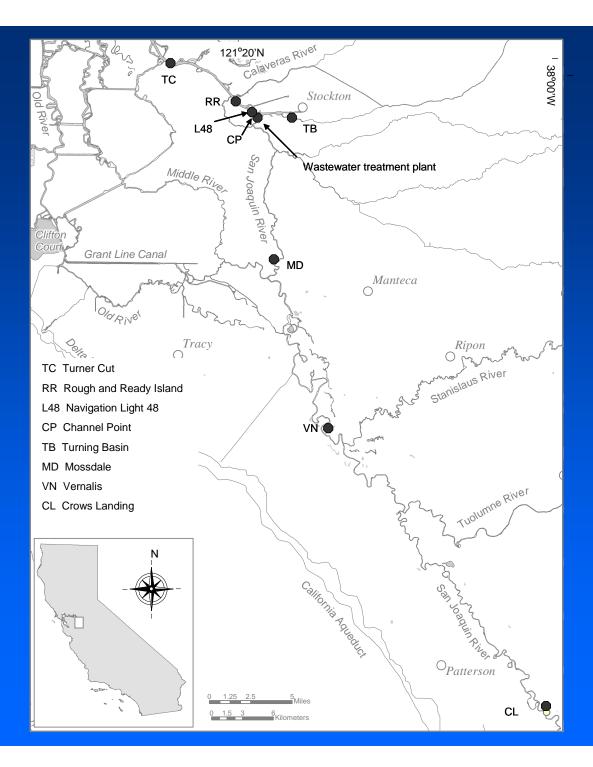
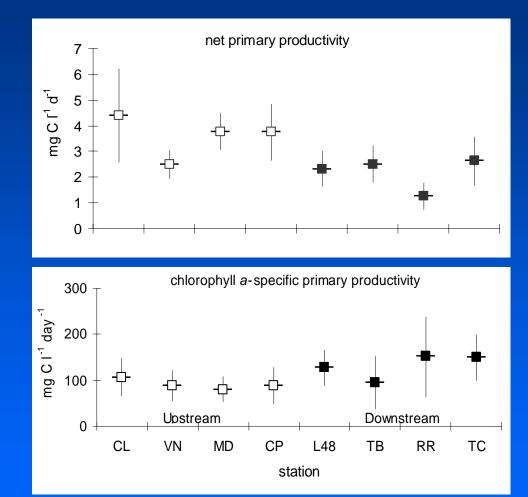
The influence of riverine phytoplankton species on primary productivity in the San Joaquin River, California

P. W. Lehman

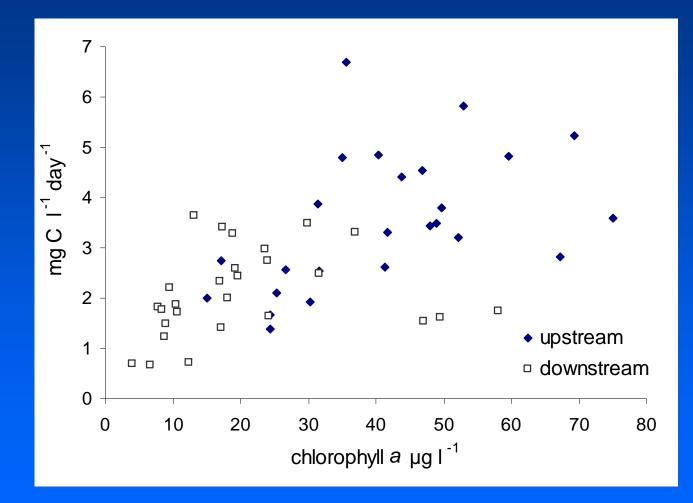
CA Department of Water Resources

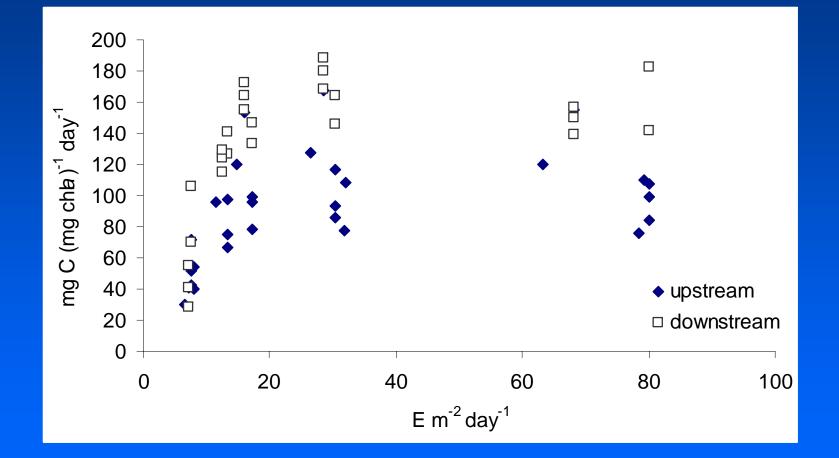

Questions

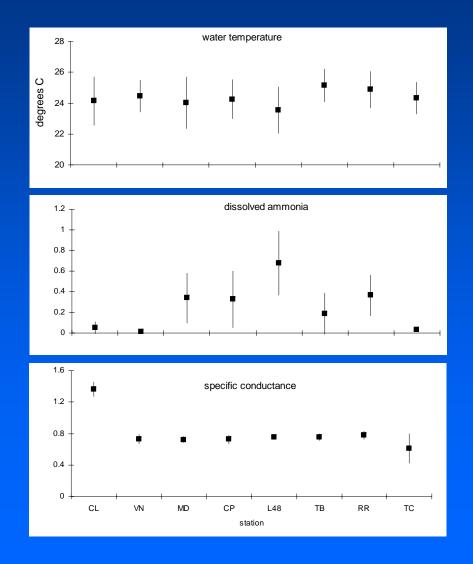
How does primary productivity along the river affect carbon load to the deep water channel?

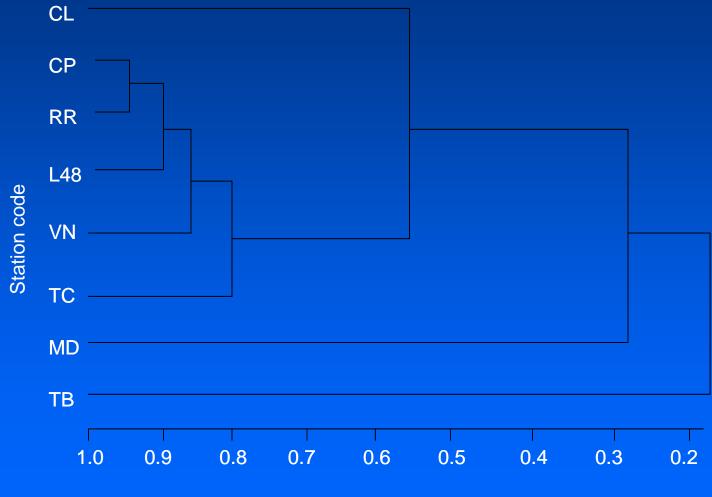

- Does the phytoplankton growth rate vary between upstream and downstream?
- Does the phytoplankton community affect primary productivity along the river?
- How do environmental conditions affect primary productivity along the river?

Methods

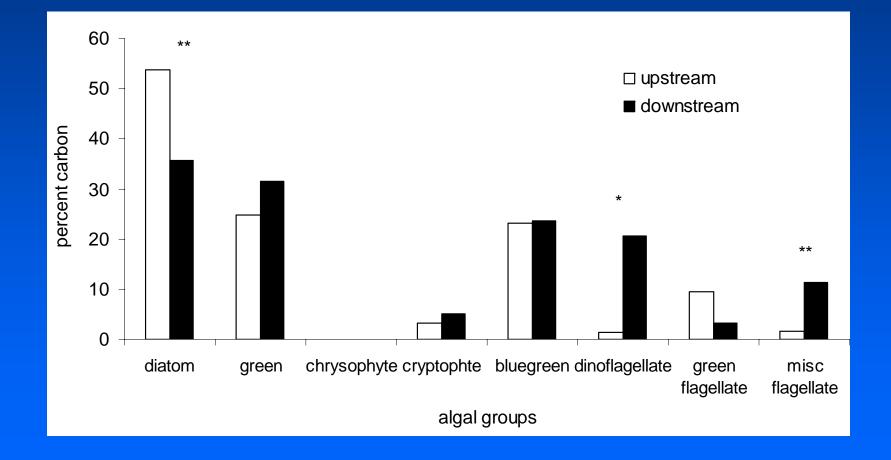

- Sampled at eight stations biweekly between June and October in 2001
- Conducted 24 h light and dark bottle dissolved oxygen incubations in flow-through open-air incubators at Rough and Ready Island
- Measured environmental conditions at each sampling station
- Measured chlorophyll a concentration and phytoplankton species composition


The specific growth rate was higher downstream


Higher growth rate upstream was produced by higher chlorophyll a concentration


Both the growth potential and efficiency were higher downstream

Nutrients and water temperature did not vary between upstream and downs<u>tream</u>



The phytoplankton differed between upstream and downstream

R-squared values

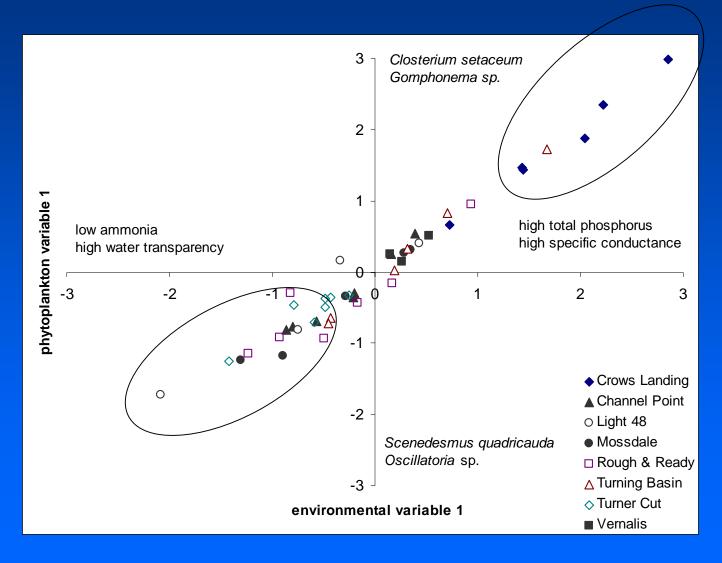
The distribution of phytoplankton carbon among species groups differed upstream and downstream

Percent diatom carbon was higher upstream than downstream

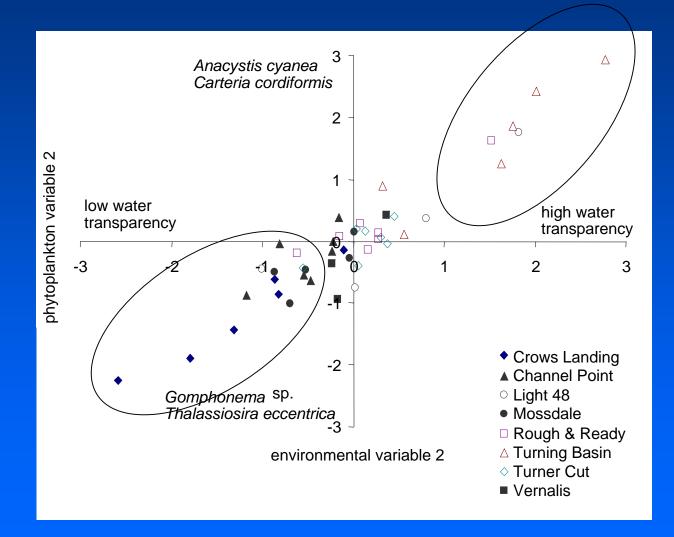
upstream

downstream

species	CL	VN	MD	СР		ΤB	LT48	RR	TC		level
diatom					station region mean mean					station mean	region mean
Achnanthes sp.	1	0	0	0	0	0	0	0	1	0	
Actinastrum hantzsc	hii 0	1	2	0	1	2	0	0	0	0	
<i>Amphora</i> sp.	0	0	0	0	0	0	3	0	0	1	
Aulacoseira granulat	'a 0	0	0	0	0	0	1	0	0	0	
Coscinodiscus _{sp.}	6	17	30	12	16	12	14	4	14	11	0.05
Cyclotella glomerata	9	5	1	2	4	0	0	2	0	1	0.05
Cyclotella sp.	17	26	19	17	20	8	13	7	22	12	0.05
Gomphonema sp. Navicula	6	1	3	0	3	0	6	0	0	1	
cryptocephala	2	0	0	0	0	0	0	0	0	0	
Naviculæp.	0	2	2	0	1	0	1	0	0	0	0.01
Skeletonema potamo	os 0	4	5	2	3	2	2	5	1	3	
Surirella ovata	2	0	1	2	1	0	0	0	0	0	0.05
Synedra acus	1	0	2	0	1	0	0	0	0	0	0.01
Synedra ulna Thalassiosira	5	3	1	1	2	1	1	0	0	0	0.01
eccentrica	1 50	0 59	3 69	3 40	2 55)1 26	1 43	4 22	11 49	4	35 0.01


Phytoplankton canonical variable

	canonical	canonical
phytoplankton species carbon	variable 1	variable 2
Closterium setaceum	0.75	0.12
Gomphonema sp.	0.40	-0.51
Carteria cordiformis	0.33	0.38
Cyclotella sp.	0.31	-0.21
Anacystis cyanea	0.30	0.52
<i>Oocystis</i> sp.	0.20	0.01
Gomphosphaeria naegelianum	0.12	-0.30
Carteria sp.	0.13	0.31
Unidentified flagellates	0.11	0.19
Thalassiosira eccentrica	-0.01	-0.35
Cryptomonas sp.	-0.03	-0.24
Cyclotella glomerata	-0.04	-0.02
Gymnodinium sp.	-0.06	0.22
Tracelomonas sp.	-0.11	-0.22
Anacystis nidulans	-0.23	0.18
Cosinodiscus sp.	-0.30	0.27
Coelastrum microporum	-0.31	0.05
Oscillatoria sp.	-0.40	-0.04
Scenedesmus quadricauda	-0.53	0.24


Environmental canonical variable

environmental variable	canonical variable 1	canonical variable 2
total phosphorus	1.02	0.04
specific conductance	0.80	-0.04
Secchi disk depth	0.36	0.93
рН	0.29	0.36
streamflow	0.08	-0.18
dissolved oxygen	-0.09	-0.05
irradiance	-0.06	-0.23
water temperature	-0.08	-0.17
soluble reactive phosphorus	-0.59	-0.40
total dissolved solids	-0.61	-0.32
dissolved ammonia	-0.70	0.05

The first phytoplankton and environmental canonical variables

The second canonical phytoplankton and environmental variables

- Chlorophyll a specific growth rate, growth potential and growth efficiency were higher downstream
- Phytoplankton species varied between upstream and downstream
- Change in phytoplankton species composition was associated with environmental factors along the river