Algae Biomass Production in Agricultural Drains

William Stringfellow Jeremy Hanlon Nigel Quinn

Berkeley National Laboratory

Objectives

- Resolve outstanding issues concerning algal growth patterns in agricultural drains
 – Is algae growth in the San Luis Drain light limited?
- Test algal mass balance in simple system (relative to river)
- Develop methods and techniques for use in larger river study

Importance of Models to Management

Light limited model

Nutrient limited model

Study Area

- San Luis Drain
- Twenty-eight mile channel
- Hydraulically simple

 One input & one output
- Conveys agricultural return flow

 Nutrients needed for algal growth
- Warm temperatures & sunlight
- Ideal system for algal growth study – Model as plug-flow reactor

Methods

- Survey San Luis Drain

 Combine traditional (grab) sampling with use of field measurement devices

 Relate distance in drain to algal residence time
 Determine if algal growth pattern fits
- model
 - Light limited or other model (nutrient)

Chlorophyll-a & TSS Along Drain

Light Availability Increases

Combined Nutrient & Grazing Model

Independent Confirmation

Independent Confirmation 0.8 -Total Phosphate (mg/L) 0.6 -0.4 -0.2

80

Mineral Solids (mg/L)

40

0

160

200

120

Conclusions

- Algal growth in SLD is not light limited
- Algae growth may be limited by a combination of factors
- Nutrients in equilibrium with mineral solids at low concentrations
- Proposed strategies for algae management need to consider implications of alternative growth models